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Problem: To simplify the computation of the variance in before-after studies, it is generally assumed that the
observed crash data for each entity (or observation) are Poisson distributed. Given the characteristics of this
distribution, the observed value (xi) for each entity is implicitly made equal to its variance. However, the
variance should be estimated using the conditional properties of this observed value (defined as a random
variable), that is, f(xi|μi), since the mean of the observed value is in fact unknown. Method: Parametric and
non-parametric bootstrap methods were investigated to evaluate the conditional assumption using
simulated and observed data. Results: The results of this study show that observed data should not be
used as a substitute for the variance, even if the entities are assumed to be Poisson distributed. Consequently,
the estimated variance for the parameters under study in traditional before-after studies is likely to be
underestimated. Conclusions: The proposed methods offer more accurate approaches for estimating the
variance in before-after studies.

© 2009 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The before-after study is a commonly used method for measuring
the safety effects of a single treatment or a combination of treatments in
highway safety (Hauer, 1997). Short of a controlled and full randomized
study design, this type of study is deemed superior to cross-sectional
studies since many attributes linked to the converted sites where the
treatment (or change) was implemented remain unchanged. Although
not perfect, the before-after study approach offers a better control for
estimating the effects of a treatment. In fact, as the name suggests, it
implies that a change actually occurred between the “before” and “after”
conditions (Hauer, 2005a). Combined with the empirical Bayes (EB)
technique, the before-after study can also minimize the bias caused by
the regression-to-the-mean (RTM) commonly found in crash data
analyses (Persaud, Retting, Garner, & Lord, 2001; Persaud, McGee, Lyon,
& Lord, 2003).Despite their largepopularity, it shouldbementioned that
not everyone agrees about their superiority over cross-sectional studies
(Tarko, Eranky, & Sinha, 1998; Noland, 2003).

Before-after studies can be grouped into three types: the simple
(naïve) before-after study; the before-after study with control groups;
and the before-after study using the EB technique (also using a control
group). The selection of the study type is usually governed by the
availability of the data, such as crashes and traffic flow, andwhether the
transportation safety analyst has access to entities that are part of the

reference group. The selection can also be influenced by the amount of
available data (or sample size).

As described by Hauer (1997), the traditional before-after study
(no matter which type is used) can be accomplished using two tasks.
The first task consists of predicting the expected number (π̂) (in this
paper, we will work with the estimated value; hence, π̂ is an estimate
of π) of target crashes for a specific entity (i.e., intersection, segment)
or series of entities in the “after” period had the safety treatment not
been implemented. The second task consists of estimating the number
of target crashes (λ̂) for the specific entity in the “after” period. Here,
the term “after” means the time period after the implementation of a
treatment; correspondingly, the term “before” refers to the time
before the implementation of this treatment. In most practical cases,
either π̂ or λ̂ can be applied to a composite series of entities where a
similar treatment was implemented at each entity.

Hauer (1997) proposed a four-step process for estimating the
safety effects of a treatment. The process is described as follows:

Step 1: For j=1,2,…,n, estimate λ(j) and π(j). Then, compute the
summation of the estimated and predicted values, such that
λ ̂=Σλ(j) and π̂̂=Σπ(j).

Step 2: For j=1,2,…,n, estimate Var{λ ̂(j)} and Var{π̂(j)}. For each
single entity, it is assumed that observed data (e.g., annual
crash counts over a long timeframe) are Poisson distributed
and λ̂(j) can be approximated by the observed value in the
before period. On the other hand, the calculation of Var{π̂(j)}
will depend on the statistical methods adopted for the study
(e.g., observed data in naïve studies, method of moments,
regression models, EB technique). Assuming that crash data
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in the before and after periods are mutually independent,
then Var{λ̂}=ΣVar{λ̂(j)} and Var{π̂}=ΣVar{π̂(j)}.

Step 3: Estimate the parameters δ and θ, where δ ̂= π̂ - λ̂ (again,
referring to estimated values) is defined as the reduction (or
increase) in the number of target crashes between the
predicted and estimated values, and θ ̂= λ̂/π̂ is the ratio
between these two values. The term θ has also been referred
to in the literature as the index of effectiveness (Persaud et al.,
2001). Hauer (1997) suggests that when less than 500
crashes are used in the before-after study, θ should be
corrected to remove the bias caused by the small sample size
using the following adjustment factor 1/[1+Var{π̂}/π̂2].

Step 4: Estimate the variances Var{δ ̂} and Var{θ ̂}. These two variances
are calculated using the following equations (note: Var{θ ̂} is
also adjusted for the small sample size) below:
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The four-step process provides a simple way for conducting before-
after studies.One important assumptionwith this process is related to the
computation of the variance Var(λ̂) (or Var{π̂}). As described above,
observed crash data are assumed to be Poisson distributed for each entity
and the observeddata are directly used in the analysis. However, as noted
byHauer (1997), the varianceVar(λ̂) is in fact unknown. The properties of
the Poisson distribution are in essence used to simplify the computation
of the variance. In this case, the observed crash counts, used here as
randomvariables, are used as a substitute for estimating the variance for
each entity (i.e., the observation is assumed to be equal to its mean).1

Given the fact the mean of the observed value is unknown, the variance
should be estimated using the conditional properties of the observed
value (i.e., f(xi|μ i)) (e.g., Cook &Wei, 2001; Diggle, Liang, & Zeger, 2002).
Consequently, there is a need to evaluate how these conditional
properties affect the estimation of the variance in the context of a
before-after study.

The objectives of this paper are to evaluate whether or not the
assumption that crash data should be used as a direct substitute to the
variance is valid, even when one assumes the data are Poisson
distributed for each entity, and if not, to examine how this may affect
the estimation of the variance for calculating the inferences associated
with the parameters used to estimate the safety effects in a before-
after study. To accomplish the objectives of this study, parametric and
non-parametric bootstrap resampling methods are investigated to
evaluate this assumption. The bootstrapmethod is first applied to data
simulated using a Poisson distribution and a Negative Binomial (or
Poisson-gamma) distribution, and a mixture of these two distribu-
tions to evaluate its applicability in this research. Then, both methods
are applied to two datasets of observed before and after crash data

taken from the literature. The proposed methods are used to estimate
λ̂, π̂, Var{λ̂} and Var{π̂} and the output is compared with the traditional
before-after method to compute these values.

The rest of this paper is divided into six sections. The first section
presents the parametric method for estimating the variance of
conditional random variables. The second section presents the char-
acteristics of the bootstrap method used in this study. The third section
covers the evaluation of the bootstrapmethod using simulateddata. The
fourth sectionpresents the application of themethods to observe before
and after data taken from the literature. The fifth section describes
important discussion points associated with before-after studies and
offers avenues for further work. The last section summarizes the key
findings of this study.

2. Parametric Method

Since the mean of an entity is unknown, the analysis of the random
variable must be carried out using the conditional properties of this
variable with respect to the mean (i.e., f(x|η)), where η={η(1), η(2),…,
η(j)} (Cook&Wei, 2001; Agresti, 2002; Bolstad, 2004). Furthermore, the
conditional property entails that the values can be approximated using
any suitable distribution.

Researchers who have conducted before-after studies (non-rando-
mized trials) using the same dataset in the before and after periods have
analyzed thedatausing the conditional propertiesdescribedabove (note:
inmanycases, themeanof the observation ismodeled as a random-effect
variable). Examples of such observational studies where themean of the
Poisson distribution was modeled as a random-effect variable can be
found in medicine (Cook & Wei, 2001), epidemiology (Laird & Ware,
1982; Diggle et al., 2002), and animal science (Schaik, Shoukri, Martin,
Schukken, Nielen, 1999). Very recently, researchers in highway safety
have also started using this conditional property for before-after studies
(Persaud, Lan, Lyon, & Bhim, 2009; Park, Park, & Lomax, 2009).
Depending upon the assumptions, the random-effect variable has been
modeled using differentmarginal distributions. For example, Diggle et al.
(2002) have proposed the Gaussian distribution for modeling the mean
of the Poisson model. Because of the properties associated with the
Poisson-gamma distribution (i.e., the closed form of the conjugate
distribution), other researchers have proposed to model the mean using
the gamma distribution (Cook & Wei, 2001; Diggle et al., 2002; Persaud
et al., 2009; Park et al., 2009). As discussed by Lord,Washington, and Ivan
(2005), it is important to point out that the Poisson-gamma distribution
(as well as other mixed-Poisson distributions, such as the Poisson-
lognormal) is used to approximate the true characteristics of the motor-
vehicle crash process. It should be pointed out that by allowing themean
to follow a given distribution, the variance estimated will not be
underestimated when a regression model is used in a before-after study.

Getting back to the primary objective of this analysis, if the means
of the Poisson distributions for entities 1,2,…,j are assumed to follow a
gamma distribution (η={η(1),…η(j)}~Gamma(ϕ, μ/ϕ)), it can be
shown that the marginal distribution becomes the conjugate Poisson-
gamma distribution, where ϕ is defined as the inverse dispersion
parameter of the Poisson-gamma distribution. The mean and variance
of η are μ and μ2/ϕ, respectively.

Using the theorem proposed by Casella and Berger (1990), referred
to as Conditional Variance Identity (CVI), it is possible to estimate the
variance for a series of observed values, when each value is conditional
upon the mean. This theorem states that “for any two random
variables X and Y, Var{Y }=E[Var(Y|X)]+Var[E(Y|X)], provided that
the expectations exist.” For the curious reader, Agresti (2002)
provides a very good discussion about the application of the CVI
properties to Poisson randomvariables. His discussion in fact supports
this work. This author states that the CVI needs to be used to estimate
the variance of random variables because μ varies (i.e., unknown) due
to unmeasured factors.

1 To examine whether this assumption in before-after studies is reasonable, one can
look into a single entity. If the actual expected number of crash counts (η(j)) for the jth
entity in either the before or the after period, then it can be shown that Var{η̂|η̂(j)}=
ΣVar{η̂(j)}=Ση(j). In practice, η(j) is approximated using observed data x(j) (a
random variable) and the true mean is therefore not known with certainty. By using
the probability mass function (PMF) of the Poisson distribution, it is straightforward to
compute the probability that Var{η(j)}=η(j)=x(j), assuming that x(j) represents the
crash count over one year time period (or other very short time periods). It is obvious
that the probability for the observed count (X) to equal the mean decreases as the
mean η(j) increases. For example, the probability is about 40 percent when η(j)=1,
while it decreases to 10 percent when η(j)=15. This entails that Var{η̂(j)}=x(j) may
not be reasonable, since the count has a large probability not being equal to the “true”
mean of an entity (if known). Thus, it is safe to assume that x(j) cannot be a good
approximation of η(j).
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