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A
key parameter for evaluating the worth of safety equipment is the extension to life

expectancy that it brings about in the population it is intended to protect. Since this is
numerically equal to the decrease in life expectancy that would occur were the equip-

ment not there, its value may be calculated by estimating the effect of the prolonged radiation
exposure that would occur in the equipment’s absence. This paper describes a procedure for
carrying out this computation efficiently for cost-benefit studies using the J-value method.
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INTRODUCTION

In a pioneering study, Lord Marshall (Marshall et al., 1982)
emphasized the need to calculate the loss of life expectancy
as a key parameter against which to assess the severity of a
nuclear release. But while the Marshall study was
concerned primarily with a short-term release resulting
from a nuclear accident, there is also a requirement to cal-
culate the loss of life expectancy resulting from a release of
radiation where the start date and the finish date may be
separated by a finite but long time interval—quite possibly
decades apart. Specifically such a figure allows quantifi-
cation of the safety benefit of equipment installed to
eliminate the prolonged exposure and thus prevent the
harm.

Pandey and Nathwani (2003) attempted to characterize
the change in life expectancy following prolonged exposure
using delay as a deterministic parameter (set at 0, 10 and 20
years successively). However, as Marshall pointed out,
while no effects are seen until a substantial period has
passed, the health effects are then stochastic over a long
interval. We have adopted Marshall’s model of stochastic
effects following a delay, and extended it to encompass
radiation releases of finite but prolonged duration (many
years) as well as short exposures as a necessary preliminary
to calculating the benefit of safety equipment. Following
Marshall et al. (1982), we have assumed a linear relation-
ship between dose and the probability of harm, but we
have taken the opportunity to increase the total risk coeffi-
cients by a factor of about four, in line with the 1990

recommendations of the International Commission on
Radiation Protection (ICRP).

The method is fully suitable for providing the gain in life
expectancy from the elimination of a prolonged radiation
exposure as an input to the J-value procedure (Thomas
et al., 2006a, b) for judging whether any given safety
expenditure is justifiable. The conservative basis of the
ICRP recommendations means that the calculated change
in life expectancy is likely to be somewhat high, which
adds to the conservatism of nuclear J-values.

CHANGE IN THE HAZARD RATE

Let the radiation exposure begin at time x ¼ 0 and con-
tinue until time, x ¼ TR. Let the rate of radiation exposure
be dr (x) (Sv y21), shown schematically in Figure 1, so that
the integrated dose, Dr (Sv), experienced by individuals in
the exposed population will be given by

Dr ¼

ð1
x¼0

dr(x) dx (1)

The fraction of all radiation-induced deaths caused by
exposure in the interval x to xþ dx will be the dose frac-
tion, (dr(x) dx)/Dr, implying a probability density, g(x),
for dose fraction and hence the fraction of radiation-induced
deaths given by

g(x) ¼
dr(x)

Dr

(2)

Over all time, the expected number of deaths in a population
of size, N, resulting from a radiation exposure causing this
integrated individual dose, Dr, will be cTNDr, where cT is
the total risk coefficient, taken as 0.05 per Sievert for the gen-
eral population and 0.04 per Sv for the working population
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(International Commission on Radiation Protection, 1990).
The probability of a given individual contracting a radi-
ation-induced cancer will be equal to the fraction of people
contracting the disease:

p(radcancer) ¼
cTNDr

N
¼ cTDr (3)

Let fM(y) be the probability distribution for the mortality
period, the interval between cancer being induced and
death, given in terms of the time, y, that has elapsed between
the time of induction, x, and the current time, t, so that
y ¼ t2 x, as shown schematically in Figure 2. The prob-
ability for death in the near vicinity of time, t, following
induction in the vicinity of time, x, is simply the product of
the probability of induction between ages, x and xþ dx,
namely gr(x) dx, and the probability that the mortality
period lies between y and yþ dy, namely fM(y) dy. This pro-
duct is fM(y)g(x) dx dy or fM(t2 x) g(x) dx dy. Thus the prob-
ability density for death occurring at time, t, given induction
at time, x, is given by fM(t2 x)g(x) dx.

But death at time, t, could have been caused by a cancer
induced over a large range of possible, earlier times, x. To
find the total probability density for death from radiation-
induced cancer at time, t, we need to integrate from the
start of the radiation release to the current time, t :

fT(t) ¼

ðt
x¼0

fM(t� x)g(x) dx (4)

However, this probability density is evaluated under the
assumption that the person is sure to contract a radiation
cancer and die. To find the probability density for an indi-
vidual contracting a radiation-induced cancer and dying at
time, t, we need to multiply this figure by the absolute

probability of contracting a radiation cancer, p(radcancer),
given in equation (3) above, and so arrive at cTDr fT(t).

The hazard rate is a fundamental, actuarial parameter,
representing the probability density for death given that
the individual has survived so far (see Appendix 1). The
hazard rate will increase after the radiation release by
the probability density, cTDr fT(t), just calculated. Hence
the increase in hazard rate at time, t, into the radiation
exposure will be

dh(t) ¼ cTDr

ðt
x¼0

fM(t� x)g(x) dx (5)

We may use equation (2) to recast equation (5) as

dh(t) ¼ cT

ðt
x¼0

fM(t� x)dr(x) dx (6)

Equation (6) will not be integrable for all conceivable
probability distributions, fM, nor for all conceivable dose
rate functions, dr (x), although numerical integration will
normally be possible. However, we may proceed further
analytically through choosing simplified functions that
can still give a good representation of reality.

Let us consider the case of a plant imposing a radiation
dose rate that is constant over the period 0 to TR at an
annual dose, da, as shown graphically in Figure 3. Since
the integrated dose is simply daTR, the corresponding prob-
ability distribution for dose fraction is simply

g(x) ¼
1

TR

for 0 � x � TR

¼ 0 for x . TR (7)

The dose rate over all time may be represented using step
or ‘jump’ functions, JP(x):

dr(x) ¼ da(1 � JP(x� TR)) (8)

where

JP(x) ¼ 1 for x � 0

¼ 0 for x , 0 (9)

As described above, radiation-induced cancers of various
types may lead to death at a random point between times

Figure 1. Radiation dose, dr(x) versus time, x.

Figure 2. Probability density for the mortality period, y. Figure 3. Dose rate constant over prolonged interval.
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