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a b s t r a c t

To reduce landing mishap risk, one of the greatest challenges is how to accurately determine whether a
landing process is safe or not. This paper presents a landing safety analysis method based on a combina-
tion of support vector machine (SVM) and rough set theory (RST). In this hybrid approach, the carrier
landing data are first analyzed with RST to identify parameters that are sensitive to changes in the state
of landing safety. With a landing data set composed of the identified sensitive parameters, the SVM model
is trained and the optimal separating hyperplane is obtained to distinguish between the two classes of
landing samples (i.e., safe and hazardous), so as to establish the relationship between landing parameters
and safety. 635 real landing samples of the aircraft carrier USS Enterprise (CVN 65) are used in the case
study, and it is shown that the proposed method is able to identify those parameters contributing more
significantly to landing safety and thus deserving more attention paid to. Furthermore, the hyperplane is
used as a basis for formulating landing parameter design and control requirements, so that the landing
parameters match well and safe landing is guaranteed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the advent of the carrier aircraft, people have been mak-
ing efforts towards improving landing safety, such as the develop-
ment of equal glide path angle landing technology, the optical
landing system, and the Sea-Based Joint Precision Approach and
Landing System (JPALS) (Rife et al., 2008). Despite the efforts in
making the landing safer, there is still plenty of room for improve-
ment. In the U.S. Navy alone, there were 11 Class A mishaps (mis-
haps in which the total cost of property damage is $1,000,000 or
greater, or in which an aircraft is destroyed or missing (Charlene
et al., 2008)) in the landing process in 2011 and 2012, which
caused six casualties (Naval Safety Center, 2012a, 2012b).
According to the statistical data, 80% of mishaps associated with
carrier aircraft occurred during landing process (Li and Yu, 2006).
In the last 20 s especially, there are so ‘‘tightly-coupled’’ operations
and complex external disturbances that the landing process is
vulnerable to failure. Failure during the landing process can
even endanger the safety of the aircraft-carrier system in some
conditions (Xu et al., 2012). However, improving the performance
and reliability of aviation systems is not adequate to solve the
problem (Leveson, 2011; Morris and Massie, 2010); to reduce the

mishap risk due to system coupling it is necessary to take timely
and effective precautions and corrective measures. Hence, first it
needs to accurately analyze the landing process and state within.

Landing process is essentially a motion of an aircraft relative to
its carrier, the sea and air. The impacts of personnel, equipment,
environment, and some other aspects on landing will eventually
be reflected in the changes of landing parameters. These parame-
ters contain dynamic characteristics of the system composed of
aircraft, carrier and surrounding environment, so they can be used
to analyze landing safety; also these parameters provide significant
evidence for prediction and control of landing. Many requirements
are described in the landing parameters (Navy and Department of
Defense, 1993), for example, it is required during landing that ship
stern must sink less than 1.5 m, flight deck roll must not be more
than 7�, and pitch must not be more than 2� (Jiang, 2008).

Therefore, the understanding of the relationship between land-
ing parameters and safety is helpful in analyzing landing safety. It
would be an ideal situation if their connections are observed
through a mechanism, but there are so many influencing factors
during landing that strong coupling exists between the parameters
and safety. Limited to the current development of technology, it is
difficult to build a landing mechanism model with full degree of
freedoms (DOFs) which contains all the influencing factors. To dis-
cover the connections in mechanism, most models in the previous
studies are built with individual influencing factors or limited
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degrees of freedom. For example, in references Cao et al. (1995), Xu
et al. (2010) and Yu (2012), the impacts of variable wind field or
some other influencing factors on landing safety are presented.
The values or safety boundaries of some landing parameters are
suggested under simplified conditions by Chen and Ang (2011),
Chen et al. (2011b), Wang (2007) and Xu et al. (2011). Moreover,
studies by Jiao et al. (2011), Shi (2009), York and Alaverdit
(1996) and Zhang et al. (2009a) have developed simplified local
models to simulate landing process and study landing safety.

However, these simplified models tend to have limitations to
address the interactions among influencing factors. For example,
the risk of landing with both adverse sea conditions and dramatic
changes in wind field is not the linear sum of the risks calculated
by only considering either, whereas the two conditions often occur
simultaneously in reality. On the other hand, it is also important
that landing parameters match each other, since only by a reason-
able matching among them can a smooth and safe aircraft landing
on a carrier be ensured (Xu et al., 2012).

For the above reasons, many researchers tactfully chose another
way to study landing safety, namely, the system identification
approach. Based on statistical analysis, the equations describing
the relationship between landing parameters and landing safety
can be established. These equations can help to analyze and predict
landing safety, and they may even assist the landing signal officer
(LSO) in making wave-off decision (i.e., landing abortion or not)
and thus to minimize crash risks. Moreover, it does not necessarily
need to have the intrinsic or fundamental physical mechanism of
crash accidents, despite a large number of parameters to be han-
dled as well as their mathematical relationship with landing safety
to be explored when using this approach, which means that the
landing can be treated as a ‘‘black box’’ for which the approach
based on data analysis is considerably suitable.

Common mathematical methods include multi-variable statisti-
cal analysis (Tian and Dai, 2014; Tian and Zhao, 2011), fuzzy con-
trol theory (Steinberg, 1993), time series analysis (Blondel et al.,
2010; Ma, 1999; Peng, 2006; Yumori, 1981), Kalman’s optimal fil-
tering theory (Sidar and Doolin, 1983) and neural network (Shi
et al., 2006). The landing data are analyzed with one or more of
these methods (Richards, 2002; Tseng and Almogahed, 2009) to
facilitate safety monitoring and decision-making in the landing
process.

However, some difficulties may arise in the application of these
methods. Neural network models sometimes fall into a local opti-
mal solution (Kim, 2003; Min and Lee, 2005; Olson and Delen,
2008; Yang and Liu, 2012). In other cases, some assumptions or
prior information such as normal distribution assumption (Tian
and Zhao, 2011), stationary random process assumption (Ma,
1999) and LSO’s experiences (Richards, 2002; Shi et al., 2006;
Steinberg, 1993) are needed before using the related analysis
method. Furthermore, those assumptions or prior information
may not be precise sufficiently for many landing parameters, or
may be difficult to verify. However, the gaps are considered to be
filled effectively by rough set theory (RST), as RST can be applied
without any problematic necessity of assumptions or information
(i.e., not precise enough or difficult to verify) (Maaten et al.,
2009), and can remove redundant information efficiently
(Pawlak, 1984). RST, which is not an alternative to the classical
set theory but embedded in it, can be viewed as a specific imple-
mentation of Frege’s idea of vagueness (Frege, 1960), i.e., impreci-
sion in RST is expressed by a boundary region of a set, rather than
by a partial membership (Pawlak, 2004). The application of RST
assists in reaching more objective conclusions (Dai and Tian,
2012), yet definitely RST as such has its deficiencies: weakness of
fault tolerance and generalization (Chen et al., 2011a; Shi et al.,
2011; Yang and Liu, 2012; Zhang, 2010; Zhang et al., 2005,
2009b). By contrast, generalization is exactly a strong point of

support vector machine (SVM) (Vapnik, 2000; Zhang, 2000).
When used for classification, SVM separates a given set of binary
labeled training data with a hyperplane that is maximally distant
from them (known as the maximal margin hyperplane), so as to
implement the structural risk minimization principle for searching
to minimize the upper bound of generalization errors rather than
minimizing training errors (Yang and Liu, 2012). On the other
hand, the weakness of SVM in removing redundant information
from the data set, which may lead to a decrease in the classification
performance and an increase in training time (Bishop, 1995;
Maaten et al., 2009; Song et al., 2005), can be made up by RST
(Maaten et al., 2009; Pawlak, 2004). By taking complementary
advantages the combination of RST and SVM is capable of yielding
more objective and generalized results than either used
individually.

Considering the ways that the methods RST and SVM comple-
ment each other, this paper presents a landing safety analysis
approach integrating both them. Through this approach, the carrier
aircraft landing data are used as input, and first analyzed with RST
to identify the parameters that are sensitive to changes in the state
of landing safety. Next, with a landing data set composed of the
identified sensitive parameters, the SVM model is trained and the
optimal separating hyperplane is determined to distinguish
between the two classes of landing samples (‘‘safe’’ or ‘‘haz-
ardous’’), by establishing the relationship between the parameters
and landing safety. This hybrid method has the following
significance:

(1) Parameters sensitive to changes in the state of landing safety
are identified by the analysis. From the view of safety, the
control to the identified parameters should be focused more
on during landing than to other ones.

(2) A safety constraint on ranges of landing parameters chang-
ing simultaneously is given and can be referred when
designers determine landing parameter and develop control
requirements, to ensure that landing parameters well match
each other.

2. Analysis method

2.1. Framework

The proposed method combining the advantages of RST and
SVM is suitable for analyzing landing data from samples with a
large size and multiple features, aiming to establish the relation-
ship between landing parameters and safety based on data mining
and statistical learning. The analysis framework is shown in Fig. 1.

First, the landing data are modeled and analyzed by RST. As a
starting point, the data are utilized to build a knowledge represen-
tation system (Pawlak, 1984, 2004), which is also known as a
knowledge base or information system similar to an
entity-attribute data base. The knowledge representation system
is built to facilitate attributes reduction, and to help train SVM
model with the aim of obtaining the optimal separating hyper-
plane. The attributes are classified into two types: landing param-
eters and the state of landing safety. As entities of the knowledge
representation system, the landing samples are described with
the values of attributes respectively. This knowledge representa-
tion system avoids introducing any problematic information or
assumptions; also, the landing parameters are analyzed simultane-
ously by considering the interactions of influencing factors and the
matching among parameters.

Based on the knowledge representation system, the
landing-safety-sensitive parameters are determined in the context
of remaining landing attributes after reduction, without any signif-
icant decrease in its classification performance. The selected
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