#### Cytokine 64 (2013) 112-121

Contents lists available at ScienceDirect

# Cytokine

journal homepage: www.journals.elsevier.com/cytokine

## Antiinflammatory properties of a peptide derived from interleukin-4

Boris Klementiev<sup>a</sup>, Maj N. Enevoldsen<sup>c</sup>, Shizhong Li<sup>a</sup>, Robert Carlsson<sup>b</sup>, Yawei Liu<sup>b</sup>, Shohreh Issazadeh-Navikas<sup>b</sup>, Elisabeth Bock<sup>a</sup>, Vladimir Berezin<sup>a,\*</sup>

<sup>a</sup> Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark

<sup>b</sup> Neuroinflammation Unit, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark

<sup>c</sup> Phlogo ApS, Sømarksvej 11, DK-2900, Hellerup, Denmark

### A R T I C L E I N F O

Article history: Received 6 March 2013 Received in revised form 19 June 2013 Accepted 20 July 2013 Available online 20 August 2013

Keywords: Interleukin-4 Tumor necrosis factor-α Interferon-γ Signalling Collagen-induced arthritis

#### ABSTRACT

Interleukin-4 (IL-4) is a potent antiinflammatory cytokine. However its use in the clinic is hampered by side effects. We here describe the identification of a novel synthetic peptide, termed Ph8, derived from  $\alpha$ helix C of IL-4, which interacts with IL-4 receptor  $\alpha$  (IL-4R $\alpha$ ). Employing various cultured genetically engineered cell lines and primary lymphocytes, surface plasmon resonance, qPCR, ELISA and immunoblotting techniques we found that Ph8 bound IL-4Rα and mimicked the anti-inflammatory effects of IL-4 by inhibiting TNF- $\alpha$  production by macrophages in vitro. It induced phosphorylation of STAT6 65 kD but inhibited phosphorylation of STAT6 110 kD induced by IL-4 in a B-cell line that expressed the type I receptor. It also inhibited the IL-4-stimulated expression of a STAT6-inducible reporter gene in cells that expressed the type II receptor. Ph8 inhibited the proliferation of Th1/2 cells and downregulated the production of IFN- $\gamma$  in stimulated Th1 cells. Moreover, Ph8 did not induce any shift in Th1/Th2 profile. This is a favorable effect and it is indicating that Ph8 could block general T cell activation and inflammatory responses without further inducing the side effects generally associated with IL-4 signaling. These data collectively show that Ph8 is only a partial agonist of IL-4 mimicking its desirable properties. In agreement, Ph8 treatment of rats with collagen-induced arthritis, a Th1- and antibody- mediated disease of joint, delayed the manifestation of chronic inflammation and reduced acute inflammation in carrageenan-induced edema. Our findings indicate that Ph8 is a promising potential drug candidate for the treatment of inflammatory diseases.

© 2013 Elsevier Ltd. All rights reserved.

### 1. Introduction

Interleukin-4 (IL-4) is one of the antiinflammatory cytokines secreted by Th2 cells. Deficits in IL-4 aggravate severe inflammation in collagen-induced arthritis (CIA), a widely used animal model of rheumatoid arthritis. Overexpression of IL-4 or exogenous administration of IL-4 significantly delayed the onset and reduced the severity of experimental autoimmune encephalomyelitis (EAE) and CIA and attenuated the pathogenesis of Alzheimer's disease

E-mail address: berezin@sund.ku.dk (V. Berezin).

in transgenic mice [1–6]. IL-4 knockout mice have been found to be more sensitive in models of transient focal cerebral ischemia [7]. IL-4 has been shown to enhance the antileukemic immune response [8]. It can also induce apoptosis of breast cancer cells [9]. The IL-4 receptor has been used as target for antitumor cytotoxin therapy [10,11]. Clinical trial of IL-4 in psoriasis has demonstrated its effectiveness to correct imbalances in immune function [12]. One of the mechanisms responsible for the antiinflammatory effects of IL-4 is attributable to the suppression of tumor necrosis factor  $\alpha$  (TNF- $\alpha$ ) production by macrophages [13], involving signal transducer and activator of transcription 6 (STAT6) activationinduced TNF mRNA destabilization [14]. The antiinflammatory potential of IL-4 makes its receptor a target for therapeutic intervention.

IL-4 can mediate immunological responses via both type I and type II receptor complexes (IL-4R-I and IL-4R-II, respectively). IL-4 binds to and signals through the two combinations of three receptor chains, IL-4R $\alpha$ , IL-13R $\alpha$ 1, and the common  $\gamma$ -chain ( $\gamma$ c). IL-4R-I, a heterodimer of IL-4R $\alpha$  and  $\gamma$ c, is the main receptor on hematopoietic cells, and it induces the activation of the Janus





CYTOKINE

*Abbreviations:* IL, interleukin; IL-R, IL-receptor; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor α; STAT, signal transducer and activator of transcription; NF-κB, nuclear factor-κB; JAK, Janus kinase; HEK, human embryonic kidney; MOG<sub>35-55</sub>, myelin oligodendrocyte glycoprotein 35–55; SEAP, secreted embryonic alkaline phosphatase; APCs, antigen-presenting cells; DLNs, draining lymph nodes; BrdU, bromodeoxyuridine; CIA, collagen-induced arthritis; CFA, complete Freund's adjuvant; CII, collagen type II; MTX, methotrexate; Dx, dexamethasone 21-disodium phosphate.

<sup>\*</sup> Corresponding author. Address: Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200, Copenhagen N, Denmark. Tel.: +45 35327235; fax: +45 35360116.

kinase 3 (JAK3)-STAT6 pathway. IL-4R-II, a heterodimer of IL-4R $\alpha$  and IL-13R $\alpha$ , can bind both IL-4 and IL-13 and is the primary receptor complex utilized by nonhematopoietic cells [15,16]. Type I and II IL-4 receptors exert distinct effects on immune response. While IL-4R-I is more active in regulating Th2 development, IL-4R-II is not found on T-cells and is more active in regulating cells that mediate airway hypersensitivity and mucus secretion [17,18].

The present study identifies a novel synthetic peptide, termed Ph8 that is a partial agonist of IL-4R $\alpha$ . *In vitro*, it mimicked the antiinflammatory effects of IL-4 by inhibiting TNF- $\alpha$  secretion by macrophages and modulating the proliferation and survival of Th cells and production of cytokines. *In vivo*, Ph8 reduced edema acutely induced by carrageenan and delayed the manifestations of chronic inflammation in the CIA rat model.

#### 2. Materials and methods

#### 2.1. Peptides

The Ph8 peptide (AQFHRHKQLIRFLKRA), biotinylated Ph8 (both dimers composed of two monomers coupled to a lysine backbone), and myelin oligodendrocyte glycoprotein 35–55 (MOG<sub>35–55</sub>) were purchased from Schafer-N (Copenhagen, Denmark).

### 2.2. Cell cultures

AMJ2-C8, an immortalized murine alveolar macrophage cell line from the American type culture collection (ATCC) and L929, a murine fibroblast cell line (European Collection of Cell Cultures, Salisbury, United Kingdom), were maintained as described previously [19,20]. Human embryonic kidney (HEK)-Blue cells (HEK-Blue IL-1 $\beta$ , HEK-Blue IL-6, and HEK-Blue IL-4/IL-13; InvivoGen, San Diego, CA, USA) are HEK293 cells that express an inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene that is quantitatively detected using the QUANTI-Blue SEAP colorimetric detection medium. The cells were maintained as described by the manufacturer.

Ramos B-lymphocyte cells (Invitrogen, Life Technologies, Nærum, Denmark) were maintained as described by the manufacturer.

Th2 cells were prepared from the spleens of OT2-C57BL/6 mice (Taconic, Ry, Denmark). CD4<sup>+</sup> T-cells were isolated with Miltenyi Biotech CD4 (L3T4) microbeads on an autoMACS (Fisher Scientific, Slangerup, Denmark). The negative fraction was irradiated with 30 Gy and used as antigen-presenting cells (APCs). T-cells  $(2 \times 10^5)$  were cultured with  $2 \times 10^6$  APCs and stimulated with 10  $\mu$ g/ml ovalbumin peptide (OVA<sub>323-339</sub>, AnaSpec, Fremont, CA, USA), 10  $\mu$ g/ml anti-interferon- $\gamma$  (IFN- $\gamma$ ) antibody (BD Pharmingen). 10 µg/ml anti-IL-12 antibody (BD Pharmingen), 5 ng/ml IL-2 (obtained from IL-2-transfected X63 cell line supernatants), and the indicated amounts of recombinant IL-4 (PeproTech Nordic) or Ph8. OT2 cells  $(8 \times 10^3)$  were incubated with or without 5 µg/ml ConA (GE Healthcare) and varying concentrations of Ph8 peptide for 48 h in triplicate. Th1 cells were obtained from draining lymph nodes (DLNs) of immunized mice and prepared and cultured with or without MOG<sub>35-55</sub>, ConA for 48 h prior to bromodeoxyuridine (BrdU) labeling as described previously [15].

#### 2.3. Surface plasmon resonance analysis

Binding experiments were performed on a Biacore 2000 instrument (Biacore AB) at 25 °C using phosphate-buffered saline (PBS; pH 7.4) as running buffer. Biotinylated Ph8 was immobilized on a streptavidin-coated SA-sensor chip. The human receptors IL-4R $\alpha$ , IL-6R, and IL-1R (R&D Systems) were injected at a flow rate of  $10~\mu l/min.$  The data were analyzed by nonlinear curve-fitting using BIAevaluation 4.1 software.

#### 2.4. Macrophage activation

AMJ2-C8 cells ( $2.5 \times 10^5$  cells/well) were incubated with Ph8, 100 µM hydrocortisone, or 25 ng/ml IL-1R antagonist (Sigma–Aldrich) for 24 h at 37 °C before 0.01 µg/ml IFN- $\gamma$  (Sigma–Aldrich), 0.1 ng/ml IL-1, or 0.1 ng/ml IL-6 (R&D Systems) was added to the cultures. L929 cells ( $0.2 \times 10^2$  cells/ml) were incubated for 24 h at 37 °C. Conditioned medium from macrophages was collected and added to the cultures of L929 cells together with actinomycin D (0.6 µg/well; Sigma–Aldrich). After 24 h of incubation at 37 °C, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS; Promega, Madison, WI, USA) was added to each well and incubated at 37 °C in the dark for 40 min, and the optical density was measured at 490 nm using an enzyme-linked immunosorbent (ELISA) reader (Wallac Multilabel counter 1420, PerkinElmer, Skovlunde, Denmark).

#### 2.5. Signaling assay in HEK-Blue cells

HEK-Blue IL-1β and HEK-Blue IL-6 cells (5 × 10<sup>4</sup> cells/well) were treated with Ph8 together with 100 ng/ml IL-1 or 100 ng/ml IL-6, respectively. After 24 h of incubation at 37 °C, 150 µl of the cell supernatants was added to each well together with 50 µl QUANTI-Blue (InvivoGen) and incubated at 37 °C for 40 min and then measured in an ELISA reader at 600 nm to determine the expression levels of reporter genes activated by nuclear factor-κB (NF-κB) and AP1 (HEK-Blue IL-1β) or STAT3 (HEK-Blue IL-6). The detection of the STAT6-inducible SEAP reporter gene was performed in HEK-Blue IL-4/IL-13 cells (3.5 × 10<sup>5</sup> cells/well) as described above.

## 2.6. Determination of STAT6 phosphorylation

Ramos B-lymphocyte cells  $(2 \times 10^7)$  were starved overnight in medium without serum. Pretreatment with 40 uM Kaempferol (Sigma-Aldrich) was performed 1 h before stimulation with IL-4 (R&D Systems) or Ph8 for 15 min. The cells were lysed by 500 µl RIPA lysis buffer that contained 1% (v/v) nonidet P-40 (Sigma-Aldrich), 0.2% (v/v) sodium dodecyl sulfate (SDS; Sigma-Aldrich), complete protease inhibitors (1:50; Roche), and phosphatase inhibitors (Calbiochem inhibitor cocktail III; 1:100) in PBS. 60 µg protein from each lysate was separated by SDS-polyacrylamide gel electrophoresis (PAGE) and transferred to a polyvinylidene fluoride membrane (Millipore). Immunoblotting was performed using a polyclonal antibody against phosphorylated Tyr 641 of STAT6 (Santa Cruz Biotechnology) and IRDye 680LT-conjugated goat anti-rabbit IgG (diluted 1:10000; Li-COR, Biosciences) in 5% (w/v) nonfat dry milk. The immune complexes were developed by Li-COR and visualized and quantified using Odyssey 3.0 V image analysis software (Bioscience). For the analysis of total STAT6 expression, 60 µg protein from each lysate was separated by SDS-PAGE and analyzed by Western blotting using a rabbit polyclonal antibody against STAT6 (Santa Cruz Biotechnology). The amount of actin was visualized using rabbit antibody against actin (Sigma-Aldrich).

#### 2.7. Immunization of mice to induce Th1-mediated immune response

C57BL/6 mice, aged 10–20 weeks, were subcutaneously immunized with 250  $\mu$ g MOG<sub>35–55</sub> (Schafer-N, Copenhagen, Denmark) and complete Freund's adjuvant (CFA) that contained 500  $\mu$ g *Mycobacterium tuberculosis* H37Ra (Difco). Spleens and DLNs were collected 27 or 10 days after immunization, respectively (*n* = 3). Download English Version:

https://daneshyari.com/en/article/5897734

Download Persian Version:

https://daneshyari.com/article/5897734

Daneshyari.com