FI SEVIER

Contents lists available at ScienceDirect

Cytokine

Review Article

The role of IL-21 in hematological malignancies

Jingjing Ma, Daoxin Ma, Chunyan Ji*

Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China

ARTICLE INFO

Article history:
Received 26 February 2011
Received in revised form 28 June 2011
Accepted 11 July 2011
Available online 6 August 2011

Keywords: IL-21 IL-21R JAK/STAT signal transduction pathway Hematological malignancies Immune therapy

ABSTRACT

IL-21, the newest member of the common γ -chain family of cytokines, has pleiotropic biological effects through regulating a variety of immune cells. Recently, the role of IL-21 in the treatment of cancers has been widely investigated. Conducted phase I trials in metastatic malignant melanoma and renal cell carcinoma have shown that rIL-21 has a favorable antitumor activity. Expression of IL-21 and IL-21R has also been found in many types of hematological malignancies, such as chronic lymphocytic leukemia (CLL), multiple myeloma (MM) and lymphoma. Through binding with IL-21R, IL-21 induces activation of different JAK/STAT signal transduction pathways and regulates proliferation or apoptosis of tumor cells. In this review, we will discuss the expression of IL-21/IL-21R and its effect in different types of hematological malignancies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

IL-21, the most recently identified member of the type I cytokine family, was initially discovered by functional cloning after expression of the IL-21R α -chain in BaF3 cells and a library from activated T cells to screen for ligands. IL-21 production was originally thought to be restricted to CD4+ T cells, a major source of IL-21 is T-follicular helper cells found in the B-cell areas of secondary lymphoid tissue, but it is now clear that IL-21 also is produced by Th17 cells and by natural killer T (NKT) cells, and IL-21 mRNA expression has also been reported in stromal cells in lymph nodes, indicating roles for IL-21 in innate as well as adaptive immune responses [1–3].

The IL-21 receptor (IL-21R) was first discovered by genomic and cDNA sequencing projects in 2000 as a putative type I family receptor bearing close resemblance to the IL-2 receptor β chain, moreover, IL-21R was located immediately downstream of IL-4R α on human chromosome 16p11 [1,4], the full-length cDNA sequence for IL-21R encodes a 538 amino acid cytokine receptor,

most similarly to IL-4R α , with an extracellular domain consisting of one copy of the conserved WSXWS-containing cytokine-binding domain, followed by a transmembrane domain and a relatively long cytoplasmic domain [5]. There are 6 tyrosines in the human IL-21R cytoplasmic domains, Y281, Y361, Y369, Y397, Y317 and Y510. Simultaneous mutation of all 6 tyrosines greatly diminishes IL-21-mediated proliferation, whereas retention of Y510 allows full proliferation [6]. Binding to the IL-21R expressed on cells lacking the γ c, IL-21 is unable to transduce any intracytoplasmic signals, while in yc-transfected cells, IL-21 binds to the IL-21R and then activates signals downstream, moreover, the chemical cross-linking study reveals the direct binding of IL-21 to the γ c, all these data demonstrated that the functional receptor for IL-21 exists as a heterodimer that comprises IL-21R and the common gamma chain (γc; CD132) [7]. γc is mutated in humans with X-linked severe combined immunodeficiency (XSCID) and results in a failure to generate T cells, NK cells, and a functional B cell population [8]. Expression of the IL-21R complex is detected in lymphoid tissues, including spleen, thymus, and peripheral blood cells. It is also expressed on resting and activated B cells, T cells, NK cells, dendritic cells (DCs), macrophages and keratinocytes. Among T cells, the IL-21R complex is expressed on both CD4+ and CD8+ subsets and upregulated upon T-cell receptor (TCR) activation. Moreover, expression of the IL-21R complex is detected in a variety of B, T, and NK cell lines including IM-9, Jurkat, EL-4, NK-92 and others

Driving the antitumor activity of CD8+ T cells is a well-known role of IL-21. The ability of IL-21 to promote CD8+ T-cell-dependent tumor responses against solid tumors has been shown in mice depleted of CD8+ T cells. IL-21 therapy in mice increases

Abbreviations: IL-21, interleukin-21; rIL-21, recombinant IL-21; IL-21R, IL-21 receptor; JAK/STAT, Janus-activated kinase/signal transducer and activator of transcription; CpG, cytosine-phosphate-guanosine; ODN, oligodeoxynucleotide; anti-BCR, anti-B-cell-receptor antibody; HMCL, human myeloma cell lines; IGF-1, insulin-like growth factor-1; TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; MIP-3α, macrophage-inflammatory protein-3α; Gal1, glycan-binding protein galectin-1; NF-kappaB, nuclear factor-kappaB; EBV, Epstein-Barr virus; HTLV-I, human T-cell leukemia virus type I.

^{*} Corresponding author. Tel.: +86 531 82169051; fax: +86 531 86115887.

E-mail addresses: mj_365@163.com (J. Ma), daoxinma@hotmail.com (D. Ma), jichunyan@sdu.edu.cn (C. Ji).

Table 1Effects of IL-21 on different hematological neoplastic cell type.

Hematological malignancy	Mechanism and effects	Ref.
Chronic lymphocytic leukemia		****
Human primary B-CLL cells	Expression of granzyme-B and CD107a	[11]
	Induction of apoptosis	
Human primary P. C.L. colle	Increased IL-21R expression (by CpG-ODN triggering) Signaling via JAK1, JAK3 and STAT1, STAT3 and STAT5	[17]
Human primary B-CLL cells	Activation of caspase-8 and cleavage of Bid to t-Bid	[17]
	Activation of caspase-3 and cleavage of p27Kip-1 and PARP	
	Inhibition of CD23 expression	
	Induction of apoptosis	
	Increased IL-21R expression (by CD40 triggering)	
	Inhibition of IL-15-triggered proliferation	
Human primary B-CLL cells	Signaling via STAT1 and STAT3	[18]
Training printing 5 CEE CCIS	Upregulation of BH3 domain protein BIM	[10]
	Induction of apoptosis	
Human primary B-CLL cells	Signaling via JAK1, JAK3 and STAT1, STAT3	[21]
	Induction of apoptosis	
	Counteraction the antiapoptotic effect of IL-15	
Aultiple myeloma		
CD45 ⁻ human myeoloma cell lines	Signaling via STAT1, STAT3 and Erk1/2	[26]
D43 Human ingeoloma cen imes	Autocrine IGP-1 secretion	[20]
	Stimulation of clonogenicity of human myeloma cells	
	Induction of myeloma cell growth	
luman primary myeloma cells	Signaling via JAK1, STAT3 and Erk1/2	[27]
L-6-dependent human myeloma cell lines	Induction of proliferation and inhibition of apoptosis	[27]
NBL-6, IH-1 and OH-2	Increased IL-21R expression	
TABLE O, THE LANG OHEA	Increased DNA synthesis in primary myeloma cells	
	mercusca Divir synthesis in primary myelonia cens	
lodgkin lymphoma	C' L' CTATO	****
Primary HL cells	Signaling via STAT3	[19]
HL cell lines L428, HDLM-2, L1236, KM-H2, L591, L540 and L540Cy	Increased expression of IL-6 and MCL1	
	Upregulation of MIP-3alpha and attraction of	
	CCR6+CD4+CD25+FoxP3+CD127lo Treg cells	
	Protection of HDLM-2 cells from CD95-induced apoptosis	
	Induction of proliferation	
II II I' 1420 1422C 41504	Mediation of immune escape	[22]
HL cell lines L428, L1236 and L591	Signaling via STAT3 and STAT5	[33]
	Activation of the NF-kappaB pathway	
	Immortalization of B cells resembled HL cells	
	(through expression of CA-STAT5)	
	Induction of proliferation	
Follicular lymphoma		
Primary FL cells	Signaling via JAK1, JAK3 and STAT1, STAT3, STAT5	[23,37]
FL cell line SUDHL4	Activation of caspase-3, -8 and -9	
	Decreased expression of Bcl-2 and Bcl-XL, and	
	increased expression of Bax	
	Induction of SOCS3 gene expression	
	Induction of apoptosis	
EL cell lines DOHH2, KARPAS-422, RL, DB, LY8 and WSUFSCCL	Signaling via JAK1	[37]
	Low IL-21R expression	
Diffuse lymphomas evolved from previous FL	Resistance to IL-21-mediated apoptosis	
Diffuse large B cell lymphoma		
Primary DLBCL cells	Signaling via JAK1, JAK3 and STAT1, STAT3	[19,38]
DLBCL cell line CRL-2632 with t(14;18)(q32;q21)	Upregulating expression of c-Myc	[10,00]
· · · · · · · · · · · · · · · · · · ·	Induction of apoptosis	
Mice harboring xenograft DLBCL tumors	Promotion of tumor regression and prolonged survival	
	0 10	
Mantle cell lymphoma	Cignaling via CTAT1	[40]
MCL cell lines Mino, SP53 and Rec-1	Signaling via STAT1	[40]
	Upregulation of BIK, NIP3 and HARAKIRI	
	Downregulation of Bcl-2, Bcl-XL/S and TNF-alpha	
	Downregulation of DNA-binding ability of NF-kB	
	Induction of apoptosis	
Burkitt's lymphoma/leukemia		
BV-transformed B cells	Expression of granzyme-B	[11]
BL lines Ramos, Namalwa, and Daudi	Induction of apoptosis	
BL cell line Ramos	Signaling via JAK1, JAK3 and STAT1, STAT3	[23]
	Enhancement of proliferation	
Adult T-cell leukemia/lymphoma		
rimary ATL cells	Signaling via STAT3 and STAT5	[46,47]
ATL-43T and ED-40515(+) cell lines	Induction of proliferation	[40,47]
VIL-451 and ED-40515(+) centimes	Induction of promeration Induction of DNA synthesis	
	madetion of Divi Synthesis	

Download English Version:

https://daneshyari.com/en/article/5898130

Download Persian Version:

https://daneshyari.com/article/5898130

<u>Daneshyari.com</u>