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a b s t r a c t

Bayesian Belief Networks (BBN) are conceptually sensible models for aviation risk assessment. The aim
here is to examine the ability of BBN-based techniques to make accurate aviation risk predictions. BBNs
consist of a framework of causal factors linked by conditional probabilities. BBN conditional probabilities
are elicited from aviation experts. The issue is that experts are not being asked about their expertise but
about others’ failure rates. A simple model of expertise, which incorporates the main features proposed
by researchers, implies that a best-expert’s estimates of failure rates are based on accessible quantitative
data on accidents, incidents, etc. Best-expert estimates will use the best available and accessible data.
Depending on the frequency of occurrence, this will be data on similar events, on similar types of event,
or general mental rules about event frequencies. These considerations, plus the need to be cautious about
statistical fluctuations, limit the accuracy of conditional probability estimates. The BBN framework
assumes what is known as the Causal Markov Condition. In the present context, this assumes that there
are no hidden common causes for sequences of failure events. Examples are given from safety regulation
comparisons and serious accident investigations to indicate that common causes may be frequent occur-
rences in aviation. This is because some States/airlines have safety cultures that do not meet ‘best prac-
tice’. BBN accuracy might be improved by using data from controlled experiments. Aviation risk
assessment is now very difficult, so further work on resilience engineering could be a better way of
achieving safety improvements.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, perhaps every possible means of preventing
air transport accidents and reducing the risks to aircraft passengers
has been investigated. The safety improvement process continues,
and is a key part of the work of operational and research staff
throughout the world. Risk assessment is a key part of this process.
There are variety of ways of understanding risk factors in combina-
tion, including fault trees, event trees, and decision trees. A compar-
ative newcomer in aviation risk analysis is the use of Bayesian Belief
Networks (BBN). There are also slightly different names for BBNs,
e.g. Bayesian Probability Nets.

The aim here is to examine the ability of BBN-based techniques
to make accurate aviation risk predictions. This is usually catego-
rised as Validation: ‘‘a demonstration that a predictive model with-
in its domain of applicability possesses a satisfactory range of
accuracy consistent with its intended application’’. This is distinct
from Verification, which is a demonstration that the modelling for-
malisms – calculations, inputs, computer code, etc. – are correct:
see Rykiel (1996) for a discussion on definitions. BBN risk assess-
ments provide insight on the connections between risk factors,

but how reliable are their quantitative estimates? Is there any dan-
ger that an estimate would ‘prove’ that part of the aviation opera-
tion is acceptably safe when in truth it is not? Would its
predictions lead to an inefficient safety focus? Could BBN results
wrongly indicate that a combination of factors of some type A gen-
erated more risks than a combination of a type B?

BBNs use experts to estimate the probabilities of events. The
probabilities are conditional, i.e. the chance of something happen-
ing given that something else has happened. Probabilities are then
combined to model the probabilistic behaviour of the system in
question. The next section explains this further. The main task here
is to try to answer the question: ‘‘Can an aviation expert estimate
rare event conditional probabilities accurately?’’ Most of the anal-
ysis is about understanding what the words in the question might
mean.

Several respected authors and research groups have studied the
use of BBNs in aviation safety, and there is considerable common-
ality in their methodologies. Illustrative examples of three of the
groups’ work, not in a priority order, are:

Neil et al. (2003): ‘‘. . .Bayesian Belief Network for an Air Traffic
Control environment. . .a high level model of ATC operations
spanning a number of defensive barriers from airspace design,
through tactical control, the operation of aircraft safety net fea-
tures to a potential accident.’’
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Luxhoj and Coit (2006): ‘‘In the aviation industry, accidents
occur very infrequently, yet it is still critical to further reduce
their rate of occurrence. Existing methods and models are
already useful, but because of the importance of these failures,
new modeling perspectives can add additional insights to fur-
ther enhance safety. . .a model devoted to this class of ‘low
probability-high consequence’ events. . .demonstrated with a
model developed for a certain aircraft accident type known as
Controlled Flight Into Terrain (CFIT).’’
Ale et al. (2009): ‘‘. . . a research effort has started to develop
causal models for air traffic risks in the expectation that these
will ultimately give the insight needed. . .In this paper, the back-
bone of the model and the way event sequence diagrams, fault-
trees and Bayesian belief nets are linked to form a homoge-
neous mathematical model suitable as a tool to analyse causal
chains and quantify risks. . .’’

The examples used here are from Ale et al. because it is very
comprehensive and is supported by extensive published work in
peer-reviewed journals.

Chapter 8 of Ale et al. (2009) is devoted to Validation in general.
It focuses on Verification aspects, but is unambiguous about valida-
tion problems in their studies:

‘‘Validation against an independent data set was unfortunately
impossible, because all available data were used to populate the
model with numbers and calibrate the model on the historical
accident rates.
Case validity: Check whether the model gives answers for a spe-
cific case which correspond to reality . . . The application of the
model on specific case studies has been postponed to a later
project.’’

The most recent published journal articles – Groth et al. (2010)
and Roelen et al. (2011) – into wider aspects of BBN modelling do
not offer much progress on this aspect. Groth et al. has a section
called Validation but it is actually about Verification. Roelen et al.
does not examine Validation explicitly.

2. Bayesian Belief Networks: a sketch

There are very many sources on BBNs. Two classic books are
Pearl (2009), who originated many of the ideas in the field, and
Spirtes et al. (2000). A more recent book with relevance to some
of the issues examined here is Williamson (2005). A recent review
of applications on dependability, risk analysis and maintenance is
Medina-Oliva et al. (2009). For present purposes, it is necessary
to explain some of the basic vocabulary of BBNs. From Faber
(2001), a BBN’s elements are:

Group of nodes – parents and descendants is one jargon – and a
group of directed arcs,
Table of prior probabilities P(Z) associated to the top-level par-
ent node Z,
Table of conditional probabilities P(Y|X) attached to the node Y
whose parent is X, which are the probability distributions over
the states of Y given the states X.

Fig. 1 is a sketch of a BBN for a power supply system of an en-
gine, main fuel supply to the engine, and backup fuel supply with
limited capacity. Electric cables deliver power to the consumers.
There will be no supply to the consumer if the power supply is
cut off. This happens if both the main and backup fuel supplies fail
and/or the supply cables fail. The boxes show the unconditional
probabilities for the top-parent events and the conditional proba-
bilities for the descendent events. Working through the probabili-
ties produces the probability structure for the different states of

the system – Fig. 2. Thus, BBNs can simply generate fault trees
and event trees: see Faber for further details.

The additional ingredient in BBNs is ‘Belief’. In many cases, the
probabilities in the boxes derive from ‘expert’ judgements. These
are ‘subjective probabilities’, rather than measured probabilities
(i.e. relative frequencies) of failure events. Elicitation is the process
of deriving these probabilities (and probability distributions) from
experts. It converts the thoughts in an individual’s mind into quan-
titative statements about his/her beliefs. Good elicitation means
that the probability statements accurately represent the expert’s
(imperfect) knowledge. A very good general reference is
Garthwaite et al. (2005).

The psychological literature reports that in some circumstances
people’s judgements are error-prone, because they use specific
heuristics, and are subject to biases in how they respond to situa-
tions involving uncertainty. Tversky and Kahneman (1974) were
the first to examine these effects comprehensively. There is now
a large literature on the topic. Kynn (2008) presents a recent re-
view, which inter alia argues that substantive experts are much
less subject to such errors and biases.

An obvious question is: ‘‘What do we mean by an expert?’’ Then
there is a range of more focused questions relevant to the present
context. ‘‘How do experts become expert?’’ ‘‘What are the charac-
teristics of expert analysis?’’ ‘‘How do we know how good an ex-
pert is?’’ ‘‘What limits the accuracy of an expert’s assessment?’’
These kinds of questions are explored in the following sections.
The literature on expertise is huge, so the text here is brief and
highly simplified.

3. What is meant by ‘an expert’?

Historically, expertise arose in pre-scientific technology, e.g. in
smelting before metallurgical chemistry and controlled experi-
ments. Specialist skills passed from one generation to the next.
Dictionary definitions of an expert are typically: ‘someone with
great skill in, or extensive knowledge of, a particular subject.’ In
the following, expert specifically means possessing some kind of
technical expertise, not simply stakeholders in a particular field.
A few examples indicate the kinds of characteristics in the develop-
ment of – and performance by – such experts. A nice background
paper is Ericsson et al. (2007), and a useful general review is
Farrington-Darby and Wilson (2006).

Probably the most studied area of expertise is the game of
chess. This is of interest in its own right but also as a ‘finite world’
means of understanding the nature of intelligence. It is often stud-
ied to aid the development of artificial intelligence methodologies
(Gobet and Chassy, 2009). Grandmaster performances are hugely
different from both novices and experienced leisure players. Typi-
cally, experts do not have a higher general intelligence or a special
talent, i.e. their expertise is largely acquired through deliberate
practice. It typically takes 6–10 years to become an expert. Specific
skills are in pattern recognition and search techniques: experts
have very specialized knowledge, partly coded as perceptual
chunks. The rapid understanding shown by experts when they face
a problem and carry out these highly focused searches is termed
‘intuition’. When necessary, chess experts can search the conse-
quences of potential moves to much greater depths. Feedback is
crucial – experts become more expert by keeping track of their suc-
cesses and their failures – and their analyses of the reasons for
failure.

Of immediate practical relevance is the estimation of software
costs (e.g. see Jørgensen and Boehm, 2009). Surveys of software
projects suggest that these estimates are quite inaccurate and
strongly biased towards over optimism. On average, there is an ef-
fort overrun of about 30%. There have been at least four decades of
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