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a  b  s  t  r  a  c  t

The  average  spatial  distance  between  transmission-linked  cases  is  a  fundamental  property  of  infectious
disease  dispersal.  However,  the  distance  between  a case  and their  infector  is  rarely  measurable.  Contact-
tracing  investigations  are  resource  intensive  or even  impossible,  particularly  when  only  a  subset  of  cases
are  detected.  Here,  we  developed  an approach  that  uses  onset  dates,  the  generation  time  distribution  and
location  information  to  estimate  the  mean  transmission  distance.  We  tested  our  method  using  outbreak
simulations.  We  then  applied  it to  the 2001  foot-and-mouth  outbreak  in Cumbria,  UK,  and  compared
our  results  to  contact-tracing  activities.  In simulations  with  a  true mean  distance  of  106  m,  the  average
mean  distance  estimated  was  109  m when  cases  were  fully  observed  (95%  range  of 71–142).  Estimates
remained  consistent  with  the  true  mean  distance  when  only  five  percent  of cases  were  observed,  (average
estimate  of 128  m,  95%  range  87–165).  Estimates  were  robust  to spatial  heterogeneity  in  the underlying
population.  We  estimated  that both  the  mean  and  the  standard  deviation  of  the  transmission  distance
during  the  2001  foot-and-mouth  outbreak  was  8.9  km  (95%  CI: 8.4  km–9.7  km).  Contact-tracing  activities
found  similar  values  of  6.3  km  (5.2km–7.4  km)  and  11.2  km  (9.5  km–12.8  km),  respectively.  We  were  also
able  to capture  the  drop  in mean  transmission  distance  over  the course  of  the outbreak.  Our  approach  is
applicable  across  diseases,  robust  to  under-reporting  and  can  inform  interventions  and  surveillance.

© 2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article under  the  CC  BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Characterizing the spatial patterns of disease transmission
is crucial to our understanding of pathogen dispersal. Public
health interventions implicitly target next generations of transmis-
sion through contact tracing and spatial targeting of quarantine,
isolation or other control measures, though often with crude
information about where pathogens will move in space. More
information about where cases may  arise in relation to identified
cases could help target resources both for control and enhanced
surveillance. Despite its usefulness, the geographical mean dis-
tances between the locations of cases in relation to the individuals
that infected them, have been difficult to elucidate. We  rarely
observe infection pairs (i.e., who infected whom) in a transmission
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network. Where only a minority of cases are observed, analyses
tend to be restricted to characterizing the spatial and temporal
scales at which cases tend to occur together but the relationship
between spatial clustering and transmission distance is complex
(Bhoomiboonchoo et al., 2014; Grabowski et al., 2014; Lin et al.,
2011; Morrison et al., 1998; Salje et al., 2015, 2012). Only where we
have been able to observe the majority of cases in a transmission
network or we  have detailed epidemiological data on who  infected
whom, has estimation of mean transmission distances previously
been possible (Assiri et al., 2013; Ferguson et al., 2001a; Keeling
et al., 2004).

It is not surprising that we are rarely able to reconstruct trans-
mission pathways for outbreaks. Directly estimating the distance
between sequential cases requires both the identification of cases
and their infectors. Such contact tracing efforts can be expensive
and time-consuming. In some cases it may  be impossible. Usu-
ally only a fraction of cases are detected. Not everyone infected
will develop symptoms severe enough to be detected (e.g., most
dengue cases are not severe enough to seek care), and even the best
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surveillance systems rarely identify 100% of symptomatic cases.
Further, if there exists an intermediary vector or reservoir (such
as the case of dengue, chikungunya or cholera), sequential cases
in a transmission chain may  never have been in contact with each
other. Phylogeographic methods have been developed to estimate
rates of viral movement across countries or continents under these
conditions (Faye et al., 2015; Rabaa et al., 2013). However, these
approaches have not yet been able to reliably capture micro-scale
dynamics except in isolated settings such as hospital-based out-
breaks (Cotten et al., 2013; Iles et al., 2014; Pybus et al., 2012; Rabaa
et al., 2010), and may  be impossible where genome mutation rates
are particularly low or high relative to the generation time. Even
where phylogenetic approaches can be used, it is likely to require
potentially prohibitive labor-intensive sequencing of large num-
bers of pathogens throughout the course of an outbreak (Stack et al.,
2010). Other fields have attempted to infer movement properties in
poorly observed settings. Plant biology, for example, has developed
methods to describe seed dispersal in situations where the source is
unknown and thereby understand the relative importance of wind
and animal movements in seed spread (Nathan and Muller-Landau,
2000). However, these methods have not been successfully applied
to human disease spread.

Here, we present an approach to estimate the mean transmis-
sion distance in infectious disease processes using only the point
locations of cases (e.g., place of residence), times at which individ-
uals become symptomatic and the generation time distribution of
the pathogen. The method is applicable in situations with full data
as well as those where only a small proportion of infections are
observed. We  demonstrate the robustness of our approach using
simulated data and then apply it to data from an outbreak of foot-
and-mouth disease in the UK in 2001.

2. Methods

2.1. Distribution of distances between cases

In outbreaks originating from a single introduction into a com-
munity, a pair of cases occurring at time points t1 and t2 can be
separated by a variable number of transmission events (denoted
by �, the number of infection events required to link a pair of cases)
(Box 1 and Fig. 1). For example, two cases occurring at the same time
may  have been infected by the same infectious individual (in which
case � = 2) or alternatively, their most recent common ancestor
(MRCA) may  be two or more generations back (� > 2). The distance
between sequential cases in a transmission chain (i.e. � = 1) can be
characterized by a transmission kernel, which we define here as
the probability density function of all transmission distances dur-
ing an epidemic. If we  assume a constant isotropic transmission
kernel (i.e. one with no directional preference), that transmission
events are independent of each other and each infected individual
has a single infector (i.e., co-infections do not occur), the distance
between pairs of cases will depend on the number of transmis-
sion events that separate them. However, without detailed genetic
information on the infecting pathogen or contact tracing informa-
tion, we are unlikely to be able to directly identify the number of
transmission events that separate any two cases. We  can, however,
calculate the mean distance between all observed pairs of cases that
occur at two time points (�obst (t1, t2), the mean of the distribution
represented by the solid black line in Fig. 1).

If we know the proportion of case-pairs at two time points that
are separated by each possible �, we can estimate the mean distance
between all case pairs as a weighted sum:

�t (t1, t2, �k, �k) =
∑
i

w
(
� = i, t1, t2

)
· �a

(
� = i, �k, �k

)
(1)

Box 1: Overview of key terms
Transmission linkage (�)—The number of transmission
events that link two cases (see example in Fig. 1)
Transmission kernel—The probability distribution function
of the distance between sequential cases in a transmission
chain
Most recent common ancestor (MRCA)—The most recent
infector that can link a pair of cases
Mean transmission distance (�k)—The mean of the trans-
mission kernel
Standard deviation of transmission distance (�k)—The
standard deviation of the transmission kernel
Mean distance between � transmission-linked pairs
(�a(�,�k,�k))—The mean distance between cases separated
by � transmission events where the transmission kernel has
mean �k and standard deviation  �k
Transmission-linkage weights (w(�, t1, t2))—The proportion
of case pairs where one occurs at t1 and the other at t2 that are
separated by � transmission events
Mean distance between all pairs (�t (t1, t2, �k, �k))—The
mean distance separating all pairs of cases where one occurs
at t1 and the other at t2 and the transmission kernel has mean
�k and standard deviation  �k
Observed mean distance between case-pairs (�tobs(t1,
t2))—The observed mean distance separating all pairs of cases
where one occurs at t1 and the other at t2

where �t (t1, t2, �k, �k) is the mean distance separating all pairs of
cases where one occurs at t1 and the other at t2; �a

(
�, �k, �k

)
is the

mean distance between pairs of cases separated by � transmission
events where the transmission kernel has mean �k and standard
deviation �k; and w

(
�, t1, t2

)
are the weights representing the pro-

portion of case pairs occurring at t1 and t2, respectively that are
separated by � transmission events. The variance of the distance
between all case pairs can be similarly estimated (see Text S1).

We  do not need to assume that the number of transmission
events that separate a pair of cases infected at the same time is
even (as would be the case if the generation time was of a fixed
duration) or that individuals infected at the same time are from the
same generation. Instead we can use information on the generation
time distribution to calculate w

(
�, t1, t2

)
.

2.2. Estimation of weights

To estimate w
(
�, t1, t2

)
, we extended a method developed by

Wallinga and Teunis that calculates the probability that a case
occurring at time t1 was  infected by a case at time t2 based on a
known generation time distribution, g(x) and the number of cases
occurring at each time point (Wallinga and Teunis, 2004). We  pro-
duce an n x n matrix, where cell [i, j] represents the probability that
a case i was infected by a case with the same time of disease onset
as case j (the Wallinga-Teunis matrix) and n is the total number of
cases. For each pair of cases, we can use the Wallinga-Teunis matrix
to estimate the probability that they are separated by � transmis-
sion events by multiplying together the cells of each unique chain
(see Fig. 2 for a worked example). This assumes that the genera-
tion times for all infections were independent of each other and
that only the day of symptom onset affected the probability of
case i infecting case j. We  could compute the probability of every
possible path linking two  cells, however, this quickly becomes com-
putationally intractable. Instead we sampled transmission trees by
randomly choosing the infector for each case. To do this we  take
each case in turn and randomly drew its infector out of all the other
cases, with the probability of any other case being the infector com-
ing from the Wallinga-Teunis matrix (i.e. determined by the time
between the cases and the generation time distribution). Note that
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