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a  b  s  t  r  a  c  t

Recent  events  have  thrown  the spotlight  on infectious  disease  outbreak  response.  We  developed  a
data-driven  method,  EpiGro,  which  can be applied  to cumulative  case  reports  to  estimate  the  order  of
magnitude  of the  duration,  peak  and  ultimate  size  of  an  ongoing  outbreak.  It  is based  on  a  surprisingly
simple  mathematical  property  of many  epidemiological  data  sets,  does  not  require  knowledge  or  estima-
tion of  disease  transmission  parameters,  is  robust  to  noise  and to small  data  sets,  and  runs  quickly  due
to its  mathematical  simplicity.  Using  data  from  historic  and  ongoing  epidemics,  we  present  the model.
We  also  provide  modeling  considerations  that justify  this  approach  and  discuss  its  limitations.  In the
absence  of  other  information  or in  conjunction  with  other  models,  EpiGro  may  be useful  to public  health
responders.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As infectious diseases are identified for the first time or emerge
in new populations, researchers increasingly use mathematical
models to describe observed patterns and to plan and evaluate
public health responses (Anderson and May, 1992; Grassly and
Fraser, 2008; Keeling and Danon, 2009; Anderson et al., 2015).
These models vary in complexity and scale, from simple compart-
mental models (Hethcote, 2000) to complex stochastic agent-based
and metapopulation approaches that include external information
like transportation networks (Rvachev and Longini, 1985; Hufnagel
et al., 2004; Eubank et al., 2004; Ferguson et al., 2006; Balcan et al.,
2010; Ajelli et al., 2010; Van den Broeck et al., 2011). The latter have
been shown to efficiently capture the real-time spread of epidemics
(Tizzoni et al., 2012), but often require large amounts of informa-
tion. Key parameters need to be estimated from epidemiological
data, which may  be accomplished by maximum likelihood estima-
tion (Ionides et al., 2006; Bretó et al., 2009; King et al., 2015) or
data assimilation (Rhodes and Hollingsworth, 2009; Shaman and
Karspeck, 2012). However, for newly emerging infections or when
estimating the impact of bioterrorism events (Walden and Kaplan,
2004; Rotz and Hughes, 2004), such information may  not always
be available. Sometimes, the community is able to quickly compile
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and share epidemiological parameters, as was for instance the case
for the devastating 2014/2015 Ebola outbreak (Van Kerkhove et al.,
2015; Chowell et al., 2014). It is nevertheless expected that model
choices reflect the balance between data availability and the needs
of the public health community (Keeling and Danon, 2009). More-
over, since the accuracy of predictions depends heavily on modeling
assumptions (Keeling and Danon, 2009; Wearing et al., 2005), it is
also important to balance the need for detailed, realistic models
against limitations in parameter information (May, 2004).

Knowing how many cases to expect, as well as when they will
peak, before an outbreak has run its course is central to preparing a
public health response (Flu Activity Forecasting Website Launched,
2016). Entire epidemiological curves can often be fitted with stan-
dard functions, such as for instance a logistic curve or the Richards
model (Tjørve and Tjørve, 2010; Peleg and Corradini, 2011; Wang
et al., 2012; Ma  et al., 2014), but are only effective late into the
outbreak. Conversely, time series approaches allow forecasting,
but are considered accurate only for short-term prediction. For
instance, using only case data and an autoregressive integrated
moving average (ARIMA) model, researchers were able to fore-
cast hospital bed utilization during the severe acute respiratory
syndrome (SARS) outbreak in Singapore up to three days forward
(Earnest et al., 2005). Additional information is usually required for
longer forecasts (see e.g. 3-month dengue forecasting using climate
data (Gharbi et al., 2011)), limiting the utility of such approaches
for newly emerging diseases, when many associated risk factors are
still unknown.
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We  identify a simple property common to the epidemiological
curves of many outbreaks and explore the modeling implications of
this finding. In particular, it allows us to describe the course of each
outbreak in terms of a very simple model, whose two parameters
can be extracted from epidemiological data. This is different from
estimating disease transmission rates since, for instance, knowl-
edge of the model discussed in this article is not sufficient to recover
the parameters (e.g. R0) of a simulated epidemic that follows the
SIR (Susceptible – Infected – Removed) dynamics. We  present an
automated parameter extraction method that allows us to explore
the applicability of the method to a variety of different outbreaks
and, more importantly, explain how the model may  be used to
forecast the scope of ongoing outbreaks, including those of some
vector-borne diseases.

2. Methods

Our general methodology is described in Fig. 1. Starting from
reported epidemiological data, we consider the cumulative number
of cases, C, and numerically produce a smooth interpolation of its
evolution (panel 1). Data collection procedures for the examples
discussed in this article are given in Technical Appendix 1 in Sup-
plementary Material. We  then use this smoothed data to estimate
incidence, G, as described in Technical Appendix 2 (see Supplemen-
tary Material). The crucial point of our approach is that rather than
plotting C as a function of time, we plot the estimated incidence G,
as a function of cumulative cases, C, G(C) (panel 2). For many out-
breaks, the graph of G as a function of C has a single “hump” and
can, at first order, be approximated by an inverted parabola (panel
3). This inverted parabola, whose equation contains two param-
eters, defines a simple model for the evolution of the outbreak,
which can be used to predict future number of cases given an initial
condition (panel 4). We  developed a method, detailed in Technical
Appendix 3 in Supplementary Material, that automatically asso-
ciates a parabola to available epidemiological data of one-wave
outbreaks. It works on partial (for ongoing outbreaks) or full (for
outbreaks that have completed their course) data sets and pro-
ceeds as follows: rather than attempting to estimate the parabola
parameters from the cumulative epidemiological curve, we fit the
graph of G(C) to its parabolic approximation and the graph of C(t)
to its corresponding time course, simultaneously. Doing so there-
fore demands that the two unknown parameters describing the
parabola be chosen to provide good approximations of two dif-
ferent (albeit related) plots. This approach is easily applicable to
ongoing outbreaks for which limited data are available, and can
therefore be used for forecasting.

3. Results

3.1. Robustness over multiple systems

The proposed approach applies to one-wave outbreaks of mul-
tiple diseases and sizes, as illustrated in Fig. 2 and supported by
our analysis of a variety of epidemiological curves (see additional
Appendix figures). The model was tested in detail on nine one-wave
outbreaks: 2014–15 chikungunya outbreaks in the Dominican
Republic (Fig. 2A), Guadeloupe (Fig. A1), and Dominica (Fig. A2);
2014–15 Ebola outbreaks in Guinea (Fig. A3), Liberia (Fig. A4), and
Sierra Leone (Fig. A5); 2008 outbreak of Salmonella SaintPaul in the
US (Fig. A6); 2008 outbreak of gastroenteritis in Majorca (Fig. 2B);
and 2009 outbreak of H1N1 in Canada (Fig. A7), as well as on one
two-wave outbreak of pertussis (2011–12 in the state of Washing-
ton, US; Fig. 4). The parabolas plotted in the figures were selected
using the automated parameter approximation method. Inspection
of these plots reveals that they capture the time course of the cumu-

lative number of cases fairly well (right panel of each figure and
as depicted in panel 5 of the schematic of Fig. 1). For very noisy
data (e.g. left panels of Figs. A3–5 for Ebola), the chosen parabola
nicely interpolates through widely oscillating reported incidence
data. The peak incidence (maximum of the blue solid curve on the
left panel of each figure) is typically higher than the maximum M
of each parabola (Figs. 2B, 4, A1–A5) and may  not occur at the same
value of the cumulative number of cases. The time frame for the
peak of the outbreak (that is when the cumulative curve shown on
the right panel of each figure is the steepest), as well as the duration
of the entire outbreak (when incidence returns to values close to
zero) are however reasonably well captured.

For these reasons, we  expect the parabolic model to describe
general trends of one-wave outbreaks, such as order-of-magnitude
estimates for their final number of cases, duration, and time frame
of peak incidence. These statements are made more quantitative
below.

A reason for the versatility of this approach is that the parabolic
approximation is also “hidden” in the standard SIR model. Fig. 3
presents simulations of this model for small and large values of
R0 > 1. The left panel of each row shows the time course of S, I,
and R scaled to the total population N = S + I + R, and the right panel
shows a numerical evaluation of the scaled incidence G/N as a func-
tion of scaled cumulative cases C/N (solid curve), together with two
parabolic approximations P1 and P2. In the context of the SIR model,
C = R + I is the total number of cases and its rate of change G = dC/dt
is incidence. It is clear from these simulations that for both values
of R0, the SIR model displays the one-hump behavior seen in the
graphs of G(C) obtained from outbreak data, and the graph of G as
a function of C is very close to an inverted parabola.

The two parabolic approximations P1 and P2 plotted in Fig. 3
cross the horizontal axis at C = 0 and C = C0, where C0 is the final
number of cases in the model and can be numerically estimated
by solving a transcendental equation (details are in Technical
Appendix 4 in Supplementary Material). The maximum M1 of
parabola P1 is a numerical evaluation of the maximum of G.  The
maximum M2 of parabola P2 is equal to � C0 (R0-1)/4, based on a
theoretical justification also provided in Technical Appendix 4 in
Supplementary Material. Both parabolic approximations are very
good, but P1, which estimates M from the data, gives a better fit
than P2. The method proposed in this article proceeds in a similar
way: it numerically estimates values of C0 and M that provide as
good a parabolic fit of G as possible, given the available data.

The approach can be extended to multiple-wave outbreaks, in
which case a parabola, or a piece thereof, is fit to each wave. The
number of waves in any outbreak may  easily be identified by plot-
ting G as a function of C, where C, the cumulative number of
reported cases, is known as a function of time. Fig. 4 provides an
example of a two-wave outbreak, with incomplete data. In this case,
the growth rate G is modeled as a piecewise parabolic function of
C. Our approach predicts a total of 4232 cases by the end of the out-
break. An article published in 2014 (Bowden et al., 2014) mentions
over 4900 cases reported by the end of 2012.

3.2. Robustness over noisy data sets

The fit of G to a parabola, or to pieces thereof, does not have to
be perfect to produce good, order of magnitude estimates of the
time evolution of the cumulative number of cases of an outbreak.
In particular, fluctuations in G (incidence) do not change the overall
one- or two-hump behavior of the curve. To make this statement
more quantitative, we  assessed whether adding a small amount
of noise (see Technical Appendix 5 in Supplementary Material for
noise generation) to the data significantly affected the outcome of
the automated parameter estimation procedure. Specifically, we
found that the standard deviation of the distribution of estimates
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