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a  b  s  t  r  a  c  t

Mathematical  models  are  invaluable  tools  for  quantifying  potential  epidemics  and  devising  optimal  con-
trol  strategies  in  case  of  an outbreak.  State-of-the-art  models  increasingly  require  detailed  individual
farm-based  and  sensitive  data, which  may  not  be  available  due  to  either  lack  of  capacity  for  data  collec-
tion  or  privacy  concerns.  However,  in many  situations,  aggregated  data  are  available  for  use.  In this
study,  we  systematically  investigate  the accuracy  of  predictions  made  by  mathematical  models  ini-
tialised  with  varying  data  aggregations,  using  the  UK  2001  Foot-and-Mouth  Disease  Epidemic  as  a  case
study.  We  consider  the  scenario  when  the  only data  available  are  aggregated  into  spatial  grid  cells,  and
develop  a metapopulation  model  where  individual  farms  in a  single  subpopulation  are assumed  to  behave
uniformly  and  transmit  randomly.  We  also  adapt  this  standard  metapopulation  model  to capture  het-
erogeneity  in  farm  size  and  composition,  using  farm  census  data.  Our  results  show  that  homogeneous
models  based  on  aggregated  data  overestimate  final  epidemic  size  but  can  perform  well  for  predicting
spatial  spread.  Recognising  heterogeneity  in  farm  sizes  improves  predictions  of  the  final  epidemic  size,
identifying  risk  areas,  determining  the likelihood  of  epidemic  take-off  and  identifying  the optimal  con-
trol strategy.  In  conclusion,  in cases  where  individual  farm-based  data  are not  available,  models  can still
generate  meaningful  predictions,  although  care  must  be taken  in their interpretation  and  use.

© 2016  Published  by Elsevier  B.V. This  is an  open  access  article  under  the  CC  BY-NC-ND  license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mathematical models form an integral part of epidemic pre-
paredness planning and real-time forecasting (Keeling et al., 2001;
Ferguson et al., 2001, 2006; Germann et al., 2006; Brooks-Pollock
et al., 2014). State-of-the-art individual farm-based models involve
detailed data: these data are often not available or, if available, are
often not in the public domain owing to privacy concerns. How-
ever, sharing data will hugely benefit developing, optimising and
training disease simulation models (Webb et al., 2016). In some
countries, only spatially aggregated data are available. However,
the full heterogeneity of individual farms may  not be captured with
these data (Keeling et al., 2010), and in cases where limited data are
available, simpler models may  be a necessity (Buhnerkempe et al.,
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2014). Striking the optimal balance between detail and utility is an
open and problem specific question.

Individual farm-based models have been utilised in the past to
aid in the understanding of epidemiological processes of Foot-and-
Mouth Disease (FMD) and testing potential control strategies such
as (ring) vaccination, culling of livestock and quarantine of infected
premises, most notably during and in the aftermath of the UK 2001
epidemic (Tildesley et al., 2009, 2006). These models typically rely
on the availability of detailed spatial information regarding the size
and location of all livestock farms (Keeling et al., 2001). Whilst these
data are available for the UK, this is not the case for many coun-
tries around the world. For example in the USA, farm location data
are aggregated at the county level to prevent privacy difficulties
(Buhnerkempe et al., 2013) and in Australia precise farm locations
are not known for all states (Garner and Beckett, 2005). In many
other countries around the world precise farm locations are not
known at all.

In situations where detailed demographic data are not available
but aggregated data are available, it may  be possible to adopt a
metapopulation approach when developing a mathematical model.
Metapopulation models are often used in ecology, theoretical biol-
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ogy and epidemiology (Levin et al., 1997; Hanski, 1999, 1994;
Bolker and Grenfell, 1995; Keeling and Gilligan, 2000; Gaff and
Gross, 2007). In metapopulation models, epidemiological units,
such as farms, are spatially aggregated into patches or subpopu-
lations. Within a patch, farms are assumed to be well mixed (in
the sense that transmission occurs randomly between all pairs
of farms, in a density-dependent manner) and behave uniformly.
Transmission within and between patches must capture the phys-
ical processes and can occur via different routes and over different
spatial scales, such as local processes (i.e. aerosol spread, direct
contact of animals, contaminated vehicles or farm equipment) or
by long distance contact such as live animal movements (Keeling
et al., 2001; Ferguson et al., 2001; Green et al., 2006; Gibbens et al.,
2001).

Given that within a patch, farms are assumed to be well mixed
and behave uniformly, a metapopulation model will not capture
the impact of local spatial clustering of farms, heterogeneity of
farm size nor species composition. Previous studies have shown
that these characteristics may  often play an important role in epi-
demic dynamics (Keeling et al., 2001; Tildesley et al., 2010; Rock
et al., 2014). In this study, we therefore investigate whether, and
under what circumstances, a metapopulation model is a good alter-
native to an individual farm-based (IFB) simulation model. Our
goal is to determine whether a novel metapopulation model gives
comparable predictions to the IFB model when considering key epi-
demiological quantities such as spatial spread, epidemic size and
distribution of epidemic size. The results presented here will ulti-
mately have implications for human and veterinary health settings
where precise locations of farm are unknown.

2. Materials and methods

2.1. Data and model

Information on farm locations, sizes and species compositions
was obtained from the 2010 agricultural census provided by the
Department of Environment, Food and Rural Affairs. Early versions
of the model used in this paper assumed one single set of param-
eters for the whole UK (Keeling et al., 2001). However, a more
accurate fit to the 2001 UK outbreak can be achieved by fitting indi-
vidual parameter sets to five distinct regions of the UK − Cumbria,
Devon, the rest of England (excluding Cumbria and Devon), Scot-
land and Wales (Tildesley et al., 2008) (Table S1). This allows for
the model to capture region-specific farming practices and con-
trol implementation. In particular, lower transmissibility values
are found in Wales (Tildesley et al., 2008), possibly owing to the
increase in road distances between farms (particularly in the hilly
sheep farming regions). Previous work indicates that this region-
alised model provides a more accurate fit to the 2001 outbreak
than a model with a single set of parameters for the entire coun-
try (Tildesley et al., 2008). In this paper, we consider outbreaks
in Cumbria, Devon and Aberdeenshire and therefore utilise model
parameters for these three counties (where Aberdeenshire param-
eters are fixed to those of Scotland).

2.2. Within farm dynamics

Farms are classified as susceptible, exposed, infectious, reported
or culled (SEIRC). The latent period (time for an exposed farm to
become infectious) is set to five days, consistent with estimates
from 2001 (Keeling et al., 2001). After this period, farms remain
infectious for four days before being reported. There is then a two-
day delay (during this period the farm remains infectious) from
reporting to culling in line with previous work (Keeling et al., 2001;
Tildesley et al., 2009). We  adopt a Markovian approach for the

transition between classes; these are modelled as a constant rate,
leading to exponential distributed periods. In this paper, we  assume
that the virus spreads rapidly when introduced in a naïve farm, such
that within-farm dynamics can be excluded from the model and all
animals on a farm are assumed to belong to the same disease status
(i.e. all animals on a farm are either susceptible or exposed etc.).

2.3. Between farm dynamics

2.3.1. Individual farm-based (IFB) model
In the 2001 IFB model, local spread, incorporating multiple

routes of transmission (trucks, airborne transmission etc.) is mod-
elled via the use of a distance dependent transmission kernel
(Keeling et al., 2001; Buhnerkempe et al., 2014). The local trans-
mission kernel exhibits power-law like behaviour, such that farms
(j) that are in the closest proximity of an infected farm i experience
the largest risk of transmission:
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Parameters �, � and � define the shape and scale of the kernel.
These parameters are estimated from the 2001 local transmission
kernel (Keeling et al., 2001; Buhnerkempe et al., 2013; Rorres et al.,
2010) and are set to 3, 1 and 0.12 respectively. The variable dij

defines the Euclidean distance between any two farms i and j. In this
model, the risk of infection is determined by the number of cattle
and sheep on infected and susceptible farms and the Euclidean dis-
tance between them. The susceptibility (˛) and infectivity
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species-specific and scale non-linearly with farm size using param-
eters p and q. The stochastic rate of transmission from farm i to j is
therefore given by:

rateij =
(

˛cNpc
c,j + ˛sN

ps
s,j

)
×
(

ˇcNqc
c,i + ˇsN

qs
s,i

)
× K
(

dij

)
whereNrepresents the number of animals on a farm for cattle (c)
or sheep (s).

Only cattle and sheep farms are included in this study; other
species such as pigs are susceptible as well, but did not appear to
play an important role during the 2001 and 2007 FMD  outbreaks
(Gibbens et al., 2001; Ryan et al., 2008).

2.3.2. Homegenous metapopulation model
For the metapopulation model, the UK is divided into grids (two-

dimensional squared cells) with an equal width and height. Farms
are then allocated to the grid cells based on their Easting and Nor-
thing coordinates of the farmhouse taken from the cattle tracing
system (Brooks-Pollock et al., 2014; Green et al., 2006). To investi-
gate the effect of the resolution of the grid cells on model outcomes,
we vary the scale of the grid cells from 200 m (in order for most
grid cells to contain only a single farm) to 10 km (with increments
of 200 m up to 1 km and 1 km increments from 1 km to 10 km grid
cell sizes). The upper limit was chosen as this fits with many spa-
tial scales used in control such as surveillance zones. As with most
metapopulation models, we  assume that all farms within a grid cell
are well mixed.

In order to estimate the mean transmission rate within and
between any two grid cells, we calculate the distance between two
randomly located farms in each grid cell by integrating over all
possible locations of farms of the two grid cells k and l:

mean (kernelkl) = 1
‖Ak‖‖Al‖

∫
k

∫
l

K
(
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)
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where Ak is the area of grid cell k andAl is the area of grid cell l, and
x and y refer to the point locations in grid cells l and k.
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