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Insulin resistance (IR) is a physiological condition in which cells fail to respond to the insulin hormone. Despite
advances in the diagnosis and treatment of IR, novelmolecular targets are still needed to improve the accuracy of
diagnosis and the outcomes of therapy.Here,we present a systems approach to identifymolecular biomarkers for
IR.We downloaded the gene expression profile of IR from the Gene Expression Omnibus (GEO), generated a reg-
ulatory network by mapping co-expressed genes to transcription factors (TFs) and calculated the regulatory
impact factor of each transcription factor. Finally, we selected a list of potential molecular targets that could be
used as therapeutic targets or diagnostic biomarkers, including ETS1, AR, ESR1 and Myc. Our studies identified
multiple TFs that could play an important role in the pathogenesis of IR and provided a systems understanding
of the potential relationships among these genes. Our study has the potential to aid in the understanding of IR
and provides a basis for IR biomarker discovery.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Insulin regulates glucose uptake and circulating free fatty acid (FFA)
concentrations. Insulin resistance (IR) is defined as an impaired sensi-
tivity to insulin in its main target organs: adipose tissue, the liver and
muscle. IR is primarily manifested in the skeletal muscle and adipose
tissue, which fail to take up adequate glucose. Elevated glucose produc-
tion in the liver also occurs, and IR increases circulating FFA concentra-
tions and causes ectopic fat accumulation. In recent years, increasing
evidence has emerged that obesity is associated with inflammation
that is causally involved in the development of IR. Most importantly,
IR has been established as a precursor of type 2 diabetes (T2D)
(Harris, 1995; Lyssenko et al., 2008) and cardiovascular disease

(Ferrannini et al., 2007; Lima et al., 2009; Reaven, 2008). Along with
hyperinsulinemia and β-cell dysfunction, IR is a major pathophysiolog-
ical determinant of dysglycemia (impaired fasting glycemia (IFG) and
impaired glucose tolerance (IGT)) and T2D (Abdul-Ghani and
DeFronzo, 2009;Defronzo, 2009). Conditions of high cardiovascular dis-
ease (CVD) risk, such as hypertension, dyslipidemia and atherosclerosis,
have also been associatedwith IR (Biddinger et al., 2008;Mulvihill et al.,
2011).

Although a variety of methods for measuring IR have been devel-
oped, there is a need for new biological markers that can be used to de-
tect IR. Current methods include the gold-standard hyperinsulinemic
euglycemic clamp (HI clamp), the insulin tolerance test, steady state
plasma glucose (SSPG) following fixed somatostatin/glucose/insulin in-
fusions andmodeling based on the oral glucose tolerance test (OGTT) or
the frequently sampled intravenous glucose tolerance test (FSIVGTT)
(Bergman, 2007). However, these procedures are mostly confined to
clinical research settings due to cost and time constraints. Fasting insu-
lin and derived indices (HOMA, QUICKI) have been widely used
(Muniyappa et al., 2008), but a lack of insulin measurement standardi-
zation strongly limits their accuracy and has prevented their adoption
in routine clinical practice. In fact, in recent years, many insulin
resistance-related biomarkers have been confirmed, such as a-
hydroxybutyrate (a-HB) (Gall et al., 2010), growth and differentiation
factor-15 (GDF-15) (Vila et al., 2011), soluble CD163 (Parkner et al.,
2012), adiponectin (Lu et al., 2008), circulating fatty acid synthase
(FASN) (Fernandez-Real et al., 2010) and YKL-40 (Rathcke et al.,
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2006). These biomarkers not only help researchers to understand the
mechanism of insulin resistance but also serve as signs for identifying
individuals at risk of progression to insulin resistance. These biomarkers
have the potential to provide simple and effective strategies for disease
prevention and patient monitoring.

In this paper, we introduce a systems approach that can be used for
the discovery of new molecular biomarkers for IR. Based on gene
expression data, we reconstructed a regulatory network and selected
a list of potential molecular targets that could be used for the discovery
of therapeutic targets and diagnostic biomarkers. These targets may
also provide novel insights into IR pathogenesis.

2. Methods

2.1. Affymetrix microarray analysis

We obtained gene expression datasets (Table 1) from the NCBI
(National Center for Biotechnology Information) GEO (Gene Expression
Omnibus) (http://www.ncbi.nlm.nih.gov/geo/) database. By using
“insulin resistance” as a search term, we found 57 human expression
datasets in the database through 2013. We chose three datasets for
our analysis based on three criteria. First, these datasets contain both
insulin-resistant and insulin-sensitive samples. Second, the three
datasets examine different tissues. Finally, each of the three datasets
has a sufficient number of insulin-resistant samples. In these datasets,
we considered only the samples that are insulin sensitive (IS) or insulin
resistant (IR) and come from different human organs. The original
expression datasets fromall of the chipswere processed into expression
estimates using the RMAmethod (robustmulti-array average) with the
default settings as implemented in Bioconductor. Next, a linear model
was constructed. The differentially expressed genes (DEG) were
extracted by using a t-test with a p-value cutoff of 0.05.

2.2. Differential co-expression analysis

To determine the correlations of gene pairs in the datasets, we used
the CoExpress tool (http://www.bioinformatics.lu/CoExpress/), which
is a user-friendly software tool for the interactive comparison of
expression profiles. CoExpress can be used to build pairwise gene co-
expression matrices.

For each co-expression gene pair, we also used the DiffCorr package
in R (Fukushima, 2012) to export a list of significantly differential
correlations as a text file. This package can calculate the differences in
the correlations, the corresponding p-values and the results of Fisher's
z-test while controlling false discovery rates (FDR).

2.3. Construction of the IR regulatory network

To reconstruct an IR regulatory network from the co-expressed gene
pairs, we first downloaded the set of human transcriptional regulation
interactions from HTRIdb (Bovolenta et al., 2012). HTRIdb is a reposito-
ry of experimentally verified interactions between human TFs and their
respective target genes. We constructed an IR regulatory network
model based on the regulatory interactions between the co-expressed
gene pairs.

2.4. Computation of the regulatory impact factor

The regulatory impact factor (RIF) appears to be a robust and valu-
able methodology for identifying the regulators that show the highest
evidence of contributing to differential expression under two different
biological conditions. The RIF is a metric assigned to each TF that com-
bines the change in co-expression of the TF and its potential targets.
The RIF is computed as described by Reverter et al. (2010).

2.5. Pathway enrichment analysis

To facilitate the functional annotation and analysis of large lists of
genes, we used DAVID (The Database for Annotation, Visualization
and Integrated Discovery) for KEGG (Kyoto Encyclopedia of Genes and
Genomes) term enrichment analysis. DAVID identifies the canonical
pathways that are associated with a given list of genes by calculating
the hypergeometric test p-value for the probability of an association
between this set of genes and a canonical pathway (Huang da et al.,
2009). A p-value of less than 0.05 and a count greater than 2 were cho-
sen as the cut-off criteria. We calculated the p-values and adjusted the
raw p-values to obtain FDR by using the Benjamini–Hochberg method
for multiple-testing correction.

3. Results

3.1. Identification of differentially expressed genes in IR

To identify co-expressed gene pairs involved in IR in different tis-
sues, we downloaded the publicly available microarray datasets
GSE22309, GSE20950 and GSE23343 from the GEO database and used
the CoExpress tool to identify co-expressed gene pairs between IR and
normal samples. We found 1775 genes with 173,206 co-expressed
gene pairs in skeletal muscle, 3774 genes with 596,396 co-expressed
gene pairs in adipose tissue and 10,089 genes with 411,194 co-
expressed gene pairs in hepatokines. A total of 355 genes were identi-
fied in all three tissues (Fig. 1).We calculated the statistical significance
of gene overlap between each pair of groups using the hypergeometric
distribution. The p-values were far less than 0.05, indicating that the
overlap between these sets does not occur by chance.

Table 1
Gene expression datasets used in this study.

Sample origin Sample type
and numbers

Raw data
source ID

Reference

Skeletal muscle 20 IS, 20 IR GSE22309 Wu et al. (2007)
Adipose tissue 20 IS, 19 IR GSE20950 Hardy et al. (2011)
Hepatokines 7 IS, 10 IR GSE23343 Misu et al. (2010)

Fig. 1. Venn diagram that shows the co-expression genes in the three datasets.
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