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our method.

Change in transcription start site (TSS) usage is an important mechanism for the control of transcription process,
and has a significant effect on the isoforms being transcribed. One of the goals in the study of TSS is the under-
standing of how and why their usage differs in different tissues or under different conditions. In light of recent
efforts in the mapping of transcription start site landscape using high-throughput sequencing approaches, a
quantitative and automated method is needed to process all the data that are being produced. In this work we
propose a statistical approach that will classify changes in TSS distribution between different samples into several
categories of changes that may have biological significance. Genes selected by the classifiers can then be analyzed
together with additional supporting data to determine their biological significance. We use a set of time-course
TSS data from mouse dendritic cells stimulated with lipopolysaccharide (LPS) to demonstrate the usefulness of

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

With recent advances in the understanding of complex mechanisms
involved in the regulation of transcription in eukaryotes, our view
of gene transcription landscape has changed dramatically. At the com-
pletion of Human Genome Project, the number of genes identified
(~20,000) was far smaller than what was previously estimated
(~50,000 to ~100,000). Subsequent studies have shown that in order
to produce the large number of known proteins from the smaller than
expected set of genes, a gene will often produce multiple unique
isoforms, accomplished through several different mechanisms (Landry
et al.,, 2003). In particular, production of multiple isoforms due to usage

of alternative promoters, which was once considered as uncommon,
has now been found to be a mechanism involved in the majority of
human genes (Davuluri et al., 2008; The ENCODE Project Consortium,
2012). The analysis of alternative promoter has become an important
topic in the study of transcriptional machinery, not only to find genes
with alternative isoforms, but also to understand the evolutionary histo-
ry of regulatory and transcriptional mechanism for these genes (Jordan
et al., 2003).

The usage of alternative promoters can result from changes in epige-
netic modifications such as DNA methylation, histone modifications and
chromatin remodeling, or from changes to using different transcription
factors that bind to different promoters (Hatchwell and Greally, 2007).
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These two mechanisms allow genes to utilize different promoters
through different means: one by blocking access to promoters, forcing
transcription factors to find different binding targets, the other by
using different transcription factors to bind to different targets. Genes
with possible alternative promoter usage under different conditions
can be found by analyzing promoter binding or transcription start site
data. In this work we focus our efforts on the analysis of transcription
start sites.

Many computational methods (Bajic et al., 2002; Down and Hubbard,
2002; Knudsen, 1999; Lu and Luo, 2008; Zhang, 1998) and experimental
approaches such as Cap Analysis of Gene Expression (CAGE), massively
parallel Paired End Tag (PET)-tagging, and TSS-Seq have been proposed
to identify TSS and the corresponding promoters (Birney et al., 2007;
Carninci et al., 2005; Suzuki et al., 2001; Tsuchihara et al., 2009). Recent
cDNA sequencing projects such as FLJ (Ota et al., 2004) and FANTOM
(Okazaki et al., 2002) have revealed that instead of utilizing only a single
TSS, a promoter can be associated with a number of TSS that are distrib-
uted around its immediate neighborhood. Databases such as DBTSS
(Yamashita et al., 2012) have made public up to 418 million TSS tags
generated using oligo-capping and TSS-Seq techniques, providing a
comprehensive overview of TSS landscapes and allowing for their com-
parisons in tissues under different conditions. The understanding of
how the distribution of TSS changes under different conditions can
help to shed further insight into the mechanism for transcribing different
isoforms, and possibly their differences in functions.

Researchers have already begun to explore the relationship between
TSS and transcription mechanisms. Some take the integrative approach
where RNA-Seq and ChIP-Seq data are utilized in the analysis of TSS
data (Yamashita et al., 2011). Others have taken the approach to analyze
the significance of differences in TSS distributions. In Carninci et al.
(2006), distributions of TSS are classified into four groups: 1) Single
dominant peak, 2) Broad, 3) Bi- or multi-modal, and 4) Broad with dom-
inant peak; and shapes of TSS distributions are correlated to nucleotide
sequences and expression levels in human and mouse. In particular,
TSS distributions with a single dominant peak are often associated with
promoters with TATA-box motif, whereas broad distributions are typi-
cally found in promoter regions that have high CG content or are
enriched with CpG islands (Gustincich et al., 2006). Other similar classi-
fication systems based on shapes of TSS distributions have also been pro-
posed (Ni et al., 2010). However, while characterizing TSS distribution
based on shapes of distributions has revealed some correlation with
gene expression, the heuristic-based approach in determining the type
of distribution shape may be a limiting factor in the uncovering of
more complex relationships. In Yamashita et al. (2011), genes with TSS
distribution changes in different tissues are grouped into categories
based on the pattern of distribution differences, and functional overrep-
resentations are identified from gene ontology analysis for each category.
These findings highlight the utility of not simply looking at whether dif-
ferences in tag distributions exist between samples, but also taking one
step further in identifying genes with specific kinds of distribution
change patterns that are of interest for the given study. Furthermore,
with advances in sequencing technology that allow researchers to gener-
ate TSS data in an unprecedented quantity and speed, a need has arisen
for statistical methods that can automatically compare TSS distributions
between different samples to identify such unique patterns.

Currently, there are many well-established methods that can be
used to detect differential expression in RNA-Seq analyses. For example,
in edgeR (Robinson et al., 2010) and DESeq (Anders and Huber, 2010),
read count of a gene, transcript, or exon is modeled as a negative bino-
mial distribution. In both methods the mean and variance of a negative
binomial distribution are modeled as functions of the true relative abun-
dance, due to the often lack of samples to estimate variance separately.
Thus, differential expression is detected by testing the null hypothesis
that the true relative abundances are the same in different samples.
However, such methods pool all the reads into a single read count,
and provide no information regarding how the reads are mapped to

different parts of the gene/transcript/exon, and whether the distribu-
tion of these mappings are different between the samples being com-
pared. In Kawaji et al. (2006), differences in the distribution of CAGE
tags for TSS are categorized into positional bias and regional bias. For
positional bias, Kruskal-Wallis one-way analysis of variance is used to
test the null hypothesis that a gene's TSS distributions in different sam-
ples have the same median. For regional bias, a tissue specificity score
(TS) is computed for each 21-bp window. High TS indicates that the tis-
sue has a tissue-specific preference for TSS usage in this 21-bp region
compared to other tissues. However, the Kruskal-Wallis test does not
actually test for equal median or mean, and may give inaccurate results
when the distribution have different shapes [Handbook of Biological
Statistics]. Furthermore, while TS can locate regional differences in tag
distributions, it is unclear how TS from various regions can be combined
to give a single score to represent how well the overall distribution
change matches the change pattern of interest. In (Zhao et al., 2011),
Minimum Difference of Pair Assignments, which is similar to Earth
Mover's Distance (Rubner et al., 1998), is proposed to compare the sim-
ilarity between TSS distributions. However, this is again a global mea-
sure of difference between distributions, and does not contain any
information on the pattern of the difference between the distributions.
In (Balwierz et al., 2009), TSS loci are grouped into TSS clusters (TSC),
and the likelihood was derived for two neighboring TSCs under the as-
sumption that they have fixed relative expression. While this approach
provides a comparison of the proportionality of adjacent TSCs, its com-
putation may become overly complex when we want to make a gene-
level comparison where many TSCs may be involved. Furthermore, in
a multi-sample comparison, the approach cannot distinguish in which
sample the change in TSC expression has occurred, and in a two-
sample comparison, the likelihood function may not be accurately
estimated.

In this work, we propose a classifier that can be reconfigured to test
for specific patterns of TSS distribution change between tissues. We will
use this approach to construct classifiers to identify genes that show dif-
ferential expression in two different samples while utilizing the same
TSS, and genes that exhibit TSS shift between two different samples,
which we name Class 1 and Class 2 genes, respectively. The pattern of
distribution change of Class 2 genes is of particular interest in our anal-
ysis of TSS, due to the possible link to alternative promoter usage, and
the unavailability of such information in traditional transcriptome anal-
ysis such as microarrays and RNA-Seq. The proposed classifier analyzes
TSS distributions in different samples by directly comparing their distri-
butions in high resolution, using only a user-defined window size to
merge TSS loci that might be using the same promoter. To test its useful-
ness, we will apply the proposed classifier to a set of TSS-Seq data for a
time-course experiment on mouse dendritic cells to discover genes with
possible alternative promoter usage after stimulation. It should be noted
here that the classifier proposed in this paper is for single sample exper-
iment only. While in recent years many works have argued that noise
found in biological replicates is significant enough to put doubt in find-
ings from single sample experiments as to whether statistical significant
findings are due to biological phenomenon or within sample variations,
when used with caution, single sample experiments can still be infor-
mative in a preliminary manner, providing candidates for more in-
depth follow-up studies. In particular, many databases, including
DBTSS, which is one of the largest repositories of sequencing data for
TSS, contain many single sample experiments, and analyses of these
data can still provide valuable knowledge about the mechanism for
transcription.

1.1. TLR signaling pathways

An important motivating application for the TSS distribution change
classifier is for the understanding of potential changes in TSS usage
when a dendritic cell is being stimulated by lipopolysaccharide (LPS).
Dendritic cells act as intermediaries between external environment
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