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Theories of the electrostatic interaction between two soft particles (i.e., particles covered with an ion-penetrable
surface layer of polyelectrolytes) in an electrolyte solution are reviewed. Interactions of soft particles after contact
of their surface layers are particularly discussed. Interaction in a salt-free medium and the discrete-charge effect
are also treated.
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1. Introduction

As is shown in the DLVO (Derjaguin–Landau–Verwey–Overbeek)
theory of colloid stability of colloid stability [1,2], electrostatic interac-
tions of charged colloidal particles in an electrolyte solution or in a
medium containing only counterions play an essential role in determin-
ing various electric phenomena in colloidal suspensions [3–13]. In this
paper we discuss the electrostatic interaction between soft particles,
i.e., hard particle covered with an ion-penetrable surface layer of
polyelectrolytes. Interfacial electric phenomena covering electrokinetics

[8,10,14–27] and electrostatic interactions of soft particles [8,10,28–37]
are quite different from those of hard particles without surface struc-
tures. Here we start with the interaction between two parallel soft
plates and then on the basis of Derjaguin's approximation [35,38,39]
we derive the corresponding interaction energies for two spheres and
two cylinders. For the case of weakly charged soft particles with no par-
ticle core, one can derive exact expressions for the interaction energy
without recourse to Derjaguin's approximation [31]. We treat not only
interactions of soft particles before contact of their surface layers but
also interactions after contact. By extending de Gennes' theory [40]
for the steric interaction between two parallel uncharged brush layers
to the electrostatic interaction between two charged brush layers,
we propose a compression model (a two-stage model) [41] and an
interdigitation-compression model (a three-stage model) [42] for
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the electrostatic interaction between two parallel soft plates. As another
model for the electrostatic interaction between soft particles after con-
tact, we extend the theory of Dähner–Rödenbeck's theory [43] on the in-
teraction between two interpenetrating vesicle-like surface-charged
particles to the interaction between two interpenetrating soft spheres
with no particle core [44,45].We also discuss the electrostatic interaction
of soft particles in a salt-free medium containing only counterions
[46–48]. Finally, we deal with the discrete-charge effect [49–54] and its
effect on the electrostatic interaction of soft particles [55].

2. Interaction between soft particles before contact

Westartwith the electrostatic interactionbetween two soft particles
before contact of their surface layers. In order to calculate the
electrostatic interaction between soft particles, one must solve the
Poisson–Boltzmann equations for both regions inside and outside
the surface layer [17–26].

2.1. Interaction between two parallel soft plates

Consider two parallel dissimilar soft plates 1 and 2 of thicknesses d1
and d2, respectively, separated by a distance h immersed in an
electrolyte solution containing N ionic species with valence zi and bulk
concentration (number density) ni∞ (i = 1, 2 …N). We treat the case
where fixed-charges are distributed in the surface layers of plates 1
and 2 at uniform densities of ρfix 1 and ρfix 2, respectively. We take an
x-axis perpendicular to the plates with its origin at the right surface of
plate 1, as in Fig. 1.

We assume that the electric potential ψ(x) outside the plates
(0 b x b h) and inside the plates (−d1 b x b 0 and h b x b h + d2)

obeys the following one-dimensional planar Poisson–Boltzmann
equations:
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where εr is the relative permittivity of the electrolyte solution, εo is the
permittivity of a vacuum, e is the elementary electric charge, k is
Boltzmann's constant, and T is the absolute temperature. In the above
Poisson–Boltzmann equations, we have assumed that the relative
permittivity εr of the electrolyte solution takes the same value in the
both regions outside and inside the surface layers. Note that if the ion-
ized group of valence Zi and number density Ni are distributed within
the surface layer of particle i (i = 1, 2), then we have ρfix i = ZieNi.

The interaction force P per unit area between two parallel soft plates
canbe calculated by integrating the excess osmotic pressure and theMax-
well stress over an arbitrary closed surface Σ enclosing either one of the
two interacting plates. As Σ, we choose two planes located at x = −∞
(in the bulk solution far from the plates) and x= x′ (0 b x′ b h) enclosing
plate 1. Here x′ is an arbitrary point in the region 0 b x b h between plates
1 and 2. Thus the force P(h) of the double layer interaction per unit area is
given by
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which, for the low potential case, can be linearized to

Ppl hð Þ ¼ 1
2
εrεo κ2ψ2 x 0ð Þ− dψ

dx
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where κ is the Debye–H\char252ckel parameter and the electroneutrality
condition ∑i = 1

N zini
∞ = 0 has been used. In Eq. (2.5), Ppl(h) N 0

corresponds to repulsion and P(h) b 0 to attraction. The corresponding
interaction energy Vpl(h) between two parallel plates per unit area can
be obtained by integrating Ppl(h) with the result that

Vpl hð Þ ¼
Z ∞

h
Ppl hð Þdh: ð2:7Þ

For the low potential case, an expression for the interaction energy
between two parallel soft plates is easily derived. The results for the
low potential case are given by [29]

Vpl hð Þ ¼ 1
4εrεoκ3 ρfix1 sinh κd1ð Þ þ ρjfix2 sinh κd2ð Þ
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For the arbitrary potential case, a simple approximation method
(the linear superposition approximation (LSA)) is available to derive
the interaction energy between particles at large particle separations.
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Fig. 1. Interaction between two parallel dissimilar soft plates 1 and 2 coveredwith surface
layers of thicknesses d1 and d2, respectively, at separation h and potential distributionψ(x)
across them.
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