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This paper deals with the recent phenomenological model of the motion of nanoscopic objects (colloidal parti-
cles, proteins, nanoparticles, molecules) in complex liquids. We analysed motion in polymer, micellar, colloidal
and protein solutions and the cytoplasm of living cells using the length-scale dependent viscosity model. Viscos-
itymonotonically approachesmacroscopic viscosity as the size of the object increases and thus gives a single, co-
herent picture of motion at the nano and macro scale. The model includes interparticle interactions (solvent-
solute), temperature and the internal structure of a complex liquid. The depletion layer ubiquitously occurring
in complex liquids is also incorporated into the model. We also discuss the biological aspects of crowding in
terms of the length-scale dependent viscosity model.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Complex soft matter systems are ubiquitous in nature. Their hierar-
chical structure spans over several orders of magnitude of length-scale
starting from nanometres up to tens of micrometres. The most distinc-
tive example of a multi-length-scale hierarchical system is the cyto-
plasm of a living eukaryotic cell. In cytoplasm large supramolecular
polymers such as actin filaments, reaching the micrometre length-

scale, are immersed in a colloidal solution of far smaller proteins with
sizes in the range of nanometres. Understanding the rules governing
the motion of nano-probes in complex liquids is key to the correct de-
scription of out-of-equilibria processes taking part in cell metabolism
[1] or in protein crystallization [2]. A description of the motion of
nano-probes in both natural (the interior of living cells) and synthetic
(polymers, colloids) complex systems, however, eludes out of the
framework of simple diffusive motion described by the Stokes–Suther-
land–Einstein (SSE) equation [3,4]: D = kT / ςm with ςm being the hy-
drodynamic drag defined by the Stokes relation ςm = 6πηmrp. In this
equation η denotes the viscosity of the solution and the index “m” re-
lates to its macroscopic value. rp is the hydrodynamic radius of the par-
ticle undergoing diffusive motion. The SSE equation is valid in simple
liquids where the probe particles are: i) much bigger than the solvent
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particles, and ii) highly diluted. Difficulties in the use of the SSE equation
arise when the hydrodynamic radius of the probe particle rp becomes
comparable to, or smaller than the hydrodynamic radius of the
solvent/co-solvent particles Rh. In complex liquids Rh is often in the
range of tens of nanometres. For nano-probes, whose rp ≲ Rh the diffu-
sion coefficient often satisfies the inequality D ≫ kT/ςm. On this basis
onewould suggest that the SSE equation is not valid in a complex liquid.

A variety of models have been proposed to explain the deviation
from the SSE equation for nanoscopic particles undergoing diffusion in
complex liquids. The models include those based on the obstruction ef-
fect [5–8], on hydrodynamic theories [9–16], on the free volume theory
[17–23], and on anomalous diffusion [24,25]. The motion of bigger
probes (rp in the range from fractions to severalmicrometres), is usually
described in terms of microrheology [26,27]. All the above models are
widely used and have been reviewed [24–28], andwill not be discussed
in too much detail in this paper.

The main focus of this review is the recently proposed model of
length-scale dependent viscosity [29,30], that describes the motion of
nano-probes in complex liquids. A strong advantage of this model is
that it can be applied to many types of complex liquids including poly-
mer [29–33],micellar [30,34], or colloidal solutions [2], or the cytoplasm
of mammalian [30,35] or bacterial [35–38] cells.

The article is organized as follows: in Section 2 we discuss the
length-scale dependent viscosity model. In Section 3, we describe how
the length-scale dependent viscosity model depends on the internal
structure of a complex liquid. Next (in Section 4) we discuss the influ-
ence of temperature on the motion in complex liquids. We also discuss
the influence of interparticle interactions onmotion in the complex liq-
uids. The influence of the depletion interactions on motion of a probe
particle and its relation to the anomalous diffusion model is described
in Section 5. In Section 6 we discuss the biological aspects of crowding
in terms of the model. Our conclusions are given in Section 7.

2. The model

The SSE equation is classified as a fluctuation–dissipation (FD) rela-
tion [39,40]. According to the fluctuation–dissipation theorem the diffu-
sion coefficient D is inversely proportional to the friction ς experienced
by a particle during motion [3,4]. One would expect transport coeffi-
cients such as diffusion coefficient D, electrophoretic mobility μ, and
sedimentation coefficient s connected in complex liquids according to
the following relation:

D0

D
¼ μ0

μ
¼ s0

s
¼ ς

ς0
¼ ηm

η0
; ð1Þ

where D, μ, and s, ς, ηm relate to values measured in a complex liquid.
The values of D0, μ0, s0, and ς0 correspond to the values measured in
pure solvent (assuming infinite dilution of the probe particles). η0 de-
notes the solvent viscosity. In 1952, however, Schachman and Harring-
ton [41] observed that small and large probes sedimenting in DNA
solutions exhibited sedimentation coefficients significantly different
from those expected by the use of Eq. (1). This result was thefirst exper-
imental evidence that the relation (1) is violated in complex liquids.
Later experiments confirmed Schachman's and Harrington's observa-
tion in other complex systems. Laurent et al. [42] studied the sedimen-
tation of bovine serum albumin in solutions of hyaluronic acid while
Chrambach and Rodbard [43,44] used capillary electrophoresis to inves-
tigate the motion of various proteins and dyes in polyacrylamide gel. In
both examples themobility of nano-probes depended exponentially on
the concentration of crowding agents constituting the complex liquid
and on the probe size. Odijk [45] summarized the experimental papers
concerning diffusion [46–49], sedimentation [7,41,50] and electropho-
resis [43,44,51,52] in polymer systems.

In the abovementioned examples a clear dependence of the relative
transport coefficients on the size of the probe particles was observed. A

theoretical description of the length-scale dependent motion of
nanoscopic objects in polymer solutions was recently proposed by Cai
et al. [53]. They proposed three different regimes for particle diffusion
in polymer solutions. Transitions between these regimes are not contin-
uous. The regimes depend on the relation between the diameter of the
probe particle d and characteristic length-scales in the polymer net-
work. The first length-scale ξ is the distance between a monomer of
one chain and the nearest monomer of another chain. ξ is defined as:
ξ = Rg(c/c*)−β where c and c⁎ is the polymer concentration and the
polymer overlap concentration, respectively, Rg is the radius of gyration
and β= ν/(3ν− 1). v=0.588 for an athermal polymer and v=0.5 for
a polymer under θ-conditions. The second length-scale L is the distance
between entangle points of polymer chains. Both ξ and L depend on the
concentration of the polymers. In the first regime where d b ξ the diffu-
sion of theprobeparticle is still not affected by thepolymermesh.When
ξ b d b L, in short time scales, the motion of the probe particle is not af-
fected by the presence of polymers. The long-time self-diffusion coeffi-
cient is affected by the presence of polymer chains. The probe inmotion
experiences an effective viscosity that scales with the square of the d/ξ
ratio. In the regimewhere d N L themotion of the probe particle is affect-
ed by relaxation of the polymer chains and the probe experiences the
macroscopic viscosity of the solution. Cai's approach follows the sugges-
tion of H. Benoît, contained in a book by P.G. deGennes [15], that a probe
with diameter exceeding ξ should experience an effective viscosity that
is very similar to the macroscopic viscosity of the polymer solution.
From the experiments of Langevin and Rondelez [50], however, we
know that this is not the case.

The recent experimental observations of Kohli and co-workers for
diffusion in solutions of linear polymers [54] confirm this unusual
length-scale dependence. The authors used fluorescence correlation
spectroscopy to monitor the diffusion coefficient of gold nanoparticles.
They observed that deviations from the SSE equation increasewith a de-
creasing rp/Rg ratio; where Rg denotes the radius of gyration of the poly-
mer. Before Kohli's work, Holyst et al. [29] had also observed length-
scale dependence of the transport properties of complex liquids. Holyst
et al. [29] performed fluorescence correlation spectroscopy measure-
ments to monitor the diffusion of fluorescent dyes and fluorescently la-
belled proteins in poly(ethylene) glycol solutions. They also used
capillary electrophoresis to monitor the electrophoretic mobility of the
same proteins in polymer matrices as well as in micellar matrices [55]
composed of rigid elongated micelles of non-ionic surfactant C12E6
[56]. Szymanski et al. [55] used the protein charge ladder method [57],
where a set of lysozyme regioisomers differing in charge but not in
size were dragged through a solution under an external electric field.
In both works [29,55] the authors interpreted their data in terms of
the effective viscosity, ηeff, experienced by the probe in motion; cf.
Fig. 1. They showed that although neither D0/D ≠ ηm/η0 nor μ0/μ ≠ ηm/η0
there was equality between the relative diffusion coefficient and the rel-
ative electrophoretic mobility:

ηeff
η0

¼ D0

D
¼ μ0

μ
: ð2Þ

Holyst et al. [29] followed Langevin and Rondelez's [50] observations
and proposed an approximatemodel that describes the effective viscos-
ity experienced by a probe undergoingmotion in a complex liquid. They
defined a function f such that:

D0

D
¼ f ¼ ηeff

η0
ð3Þ

where

ln fð Þ ∝ 2rp=ξ
� �a for rp ≪ Rg ;

Rg=ξ
� �a for rp ≫ Rg ;

(
ð4Þ

56 T. Kalwarczyk et al. / Advances in Colloid and Interface Science 223 (2015) 55–63



Download English Version:

https://daneshyari.com/en/article/590649

Download Persian Version:

https://daneshyari.com/article/590649

Daneshyari.com

https://daneshyari.com/en/article/590649
https://daneshyari.com/article/590649
https://daneshyari.com

