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Dynamic modeling is a powerful tool for predicting changes in metabolic regulation. However, a large num-
ber of input parameters, including kinetic constants and initial metabolite concentrations, are required to
construct a kinetic model. Therefore, it is important not only to optimize the kinetic parameters, but also
to investigate the effects of their perturbations on the overall system. We investigated the efficiency of the
use of a real-coded genetic algorithm (RCGA) for parameter optimization and sensitivity analysis in the
case of a large kinetic model involving glycolysis and the pentose phosphate pathway in Escherichia coli
K-12. Sensitivity analysis of the kinetic model using an RCGA demonstrated that the input parameter values
had different effects on model outputs. The results showed highly influential parameters in the model and
their allowable ranges for maintaining metabolite-level stability. Furthermore, it was revealed that changes
in these influential parameters may complement one another. This study presents an efficient approach
based on the use of an RCGA for optimizing and analyzing parameters in large kinetic models.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modeling is a powerful approach for understanding
and predicting dynamic behavior in the regulatory mechanisms of
metabolic pathways in response to genetic modifications and envi-
ronmental changes. Several kinetic models of cell metabolism, based
on nonlinear ordinary differential equations, have been developed
to detect time-dependent changes in metabolic concentrations. For
example, models of glycolysis and the pentose phosphate (PP) path-
way in Escherichia coli K-12 (Chassagnole et al., 2002) and the tricar-
boxylic acid (TCA) cycle in Dictyosteliumdiscoideum (Wright et al.,
1992) have been constructed. Furthermore, large-scale model inte-
gration has been performed. For example, the glycolysis and PP path-
way model developed by Chassagnole et al. (2002) have been
integrated with models of the TCA cycle (Kadir et al., 2010; Usuda
et al., 2010) and amino acid biosynthesis (Lee et al., 2010).

However, kinetic models require a large number of parameters, in-
cluding kinetic constants and initial metabolite concentrations. Informa-
tion about these parameters has been stored in databases, such as
BRENDA (Schomburg et al., 2004), SABIO-RK (Wittig et al., 2012), and
BioModels (Li et al., 2010). In many cases, however, the parameters
stored in databases are insufficient for the construction of an accurate
metabolic model, since the kinetic parameters are usually obtained or

estimated from measurements reported by different laboratories using
different in vitro models and conditions. Parameter estimation and opti-
mization, achieved by comparing the simulation results of a kinetic
model and experimental data, are integral parts of kinetic modeling.

Kinetic parameters have distinct solutions (multimodality), distinct
scales for parameters (ill-scaling), and interdependency among subsets
of the parameters (parameter dependency) under the same objective
function. For the optimization of kinetic parameters with these proper-
ties, various approaches based on evolutionary algorithms, such as sim-
ulated annealing (Chassagnole et al., 2002), evolutionary programming
(Costa et al., 2010), and genetic algorithms (Fang et al., 2009; Ishii et al.,
2007; Lee et al., 2010; Matsubara et al., 2006), have been adopted.

A genetic algorithm (GA) is a biologically inspired method of func-
tion optimization based on evolutionary theory. It is well suited to
problems involving numerous parameters, because of its multi-start
random-search approach. However, the performance of a GA depends
on how it encodes solutions as chromosomes and on its parameters.
Real-coded GAs (RCGAs) (Ono and Kobayashi, 1997), which use
strings of real numbers for parameters to be optimized as chromo-
somes, are known to be more efficient for functional optimization
than binary-coded GAs (Goldberg, 1989), which use strings of binary
bits 0 and 1, with respect to the ability to avoid converging to local
minima of the solution space (Ono and Kobayashi, 1997). Previous
adaptations of RCGAs seem to be insufficient for evaluating parame-
ters and indicating methodology (Fang et al., 2009; Ishii et al., 2007;
Lee et al., 2010; Matsubara et al., 2006).

Furthermore, it is important to understand and quantify the effect of
the optimized input parameters on the model output. Sensitivity analysis
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is one approach to determine which input parameters have the largest
impact onmodel output (Maggio et al., 2010). There are two types of sen-
sitivity analysis: local and global. Local sensitivity analysis may be used to
determine which parameters are relatively important at a single point in
the parameter space, whereas global sensitivity analysis seeks a measure
of relative importance over the entire parameter space. Global methods
have a higher computational cost than local methods, but they provide
more realistic results, since parameter interactions can be identified
(Maggio et al., 2010). There are many techniques for global sensitivity
analysis, including Monte Carlo simulations. Local and global sensitivity
analyses have been applied to kinetic models based on Chassagenole's
model (Costa et al., 2010; Degenring et al., 2004; Maggio et al., 2010).

In this study,weevaluatedRCGAparameterswith respect to efficiency
of parameter estimation andoptimization in a large kineticmodel. Param-
eter sensitivity analyses coupled with the RCGA were used to determine
parameters having a large effect on the variability of the system output,
lower and upper limits of parameters for the maintenance of metabolic
concentrations, and their correlation control.

2. Materials and methods

2.1. Kinetic model structure

The dynamic model of E. coli formulated by Chassagnole et al.
(2002) was used as a benchmark. This model, which describes the

dynamic metabolic behavior of glycolysis and the PP pathway after
a glucose pulse, includes 30 enzymatic reactions and 25 metabolites
consisting of 18 balanced metabolites and 7 unbalanced cofactors
(e.g., atp, adp, and nad). The corresponding metabolic network is
shown in Fig. 1. The rate of change of the concentration of a metabo-
lite in this metabolic network is given by the following equation:

dCi

dt
¼ ∑

j¼1
Nijvj−μCi ð1Þ

where Ci is the concentration of the metabolite i, vj is the rate of the
reaction j, Nij is the stoichiometric coefficient of the metabolite i in
the reaction j, and μ is the specific growth rate. Thus, the term μCi rep-
resents the dilution effect due to growth. All formulas in the dynamic
model of E. coli can be found in the original paper (Chassagnole et al.,
2002). For example, the mass balance for g6p and f6p metabolites is
given by Eqs. (2) and (3), and PTS and PGI biosynthesis are described
by Eqs. (4) and (5).

dCg6p

dt
¼ vPTS−vPGI−vG6PDH−vPGM−μCg6p ð2Þ

dCf6p

dt
¼ vPGI−vPFK þ vTKb þ vTA−2vMurSynth−μCf6p ð3Þ

Fig. 1. Glycolysis and pentose phosphate (PP) pathway in E. coli. Enzyme names are written in upper case. Arrows indicate the directions of reactions. Metabolite names are written
in lower case in ellipses. Names of cofactors, which are written in lower case, are shown beside enzymatic reactions. Positive signs and negative signs indicate activators and
inhibitors, respectively. The abbreviations correspond to the formal names given in Supplementary Table 1.
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