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Correct classification and prediction of tumor cells is essential for a successful diagnosis and reliable future treat-
ment. In this study, we aimed at using genetic algorithms for feature selection and proposed silhouette statistics
as a discriminant function to distinguish between six subtypes of pediatric acute lymphoblastic leukemia by
using microarray with thousands of gene expressions. Our methods have shown a better classification accuracy
than previously published methods and obtained a set of genes effective to discriminate subtypes of pediatric
acute lymphoblastic leukemia. Furthermore, the use of silhouette statistics, offering the advantages ofmeasuring
the classification quality by a graphical display and by an average silhouette width, has also demonstrated feasi-
bility and novelty for more difficult multiclass tumor prediction problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of gene expression profiles that serve as molecular sig-
natures for tumor/cancer classification has become a highly challenging
research topic in bioinformatics. Generally, the classification ofmicroar-
ray data of cancers can be delineated into two tasks: gene selection and
classification. Gene selection searches class discriminant genes for clas-
sification, from thousands of gene expression profiles. Classification re-
quires the construction of amodel, which processes input gene patterns
representing objects, and predicts the class or category associated with
the objects under consideration.

Due to the special characteristics of microarray data's classification
problem, that is the very small samples in an extremely high dimen-
sional input gene space, many computational algorithms, based on
rank based gene selection schemes (gene vs. ideal gene) have been
successfully applied to microarray data classification task, including
the use of hierarchical clustering (Alizadeh et al., 2000), support vec-
tor machine (Furey et al., 2000), neighborhood/SOM analysis (Golub
et al., 1999), and artificial neural networks (Khan et al., 2001). In
fact, there are more types of cancers, and potentially even more sub-
types, and when the heterogeneity of cancers is still the most signifi-
cant problem in the practical management of the individual patient,
the development of methods for multiclass classification problems

has become necessary (Li et al., 2004). Instead of ranking genes for
feature selection, many approaches based on genetic algorithms
have been proposed to evaluate candidate genes in chromosomes to
be used as input data for classifiers (Deutsch, 2003; Li et al., 2001;
Lin et al., 2006; Liu et al., 2005; Ooi and Tan, 2003). These methodol-
ogies, such as the maximum likelihood method of GA/MLHD and the
silhouette statistics of GASS, have shown their superiorities to capture
informative genes and to improve the prediction accuracy in the
multiclass microarray classification problems, especially when the
number of classes is more than five.

Pediatric Acute Lymphoblastic Leukemia with many cancer sub-
types is the most common type of leukemia in children. In this
paper, we extend our previous work of GASS to classify the gene ex-
pression profiles of acute lymphoblastic leukemia. In the results of
our experiments, this methodology has exhibited 100% classification
accuracy, and needed a less number of discriminating genes com-
pared to reported techniques based on the same dataset. Moreover,
we also introduced the new application of silhouette statistics in clas-
sification quality analysis, whereas it was originally published for the
quality of clustering analysis (Rousseeuw, 1987). This is a plausible
improvement in the multiclass microarray classification problem
and may be a useful method in cancer diagnosis.

2. Methods

2.1. Classification based on silhouette statistics

In this section, we describe the main discriminant method that we
will use in this paper. For tumor pattern classification, our definition
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starts by assuming that we are given a dataset D. LetD={(⇀ej; lj), for j=
1…m} be a set of m number of samples, where ⇀ej ¼ ej1; ej2;…; ejG

� �t is
the vector of tumor pattern for the ith sample that describes expression
levels of G number of predictive genes, and lj ∈ L={c1, c2, …, cq} is the
class label associated with ⇀ej. Our discriminant function based on the
silhouette statistics is then defined as
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→
i and all other sam-

ple patterns in the class to which e
→

i belongs, and b(e
→

i) is the mini-
mum average distance of e
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i to objects in other classes. The Sil(e
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the discriminant function, returning the discrimination score, ranging
from −1 to +1, to indicate how well a test sample, represented by
the vector of e

→
, can be assigned to its own class. Intuitively, samples

with a large silhouette value are well classified, and those with a
small silhouette value tend to lie between classes, and those with a

negative value are poorly classified. In order to classify samples into
their own classes without a negative silhouette value, we set
Sil(e

→
)>0 as a criterion for each sample to be correctly classified.

This means that once the returning value is less than zero, we
say that the corresponding sample is misclassified under the dis-
criminant variable of e

→
. Therefore, the classification rule can be

written as
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> θ; θ ¼ 0 ð2Þ

where θ is the silhouette threshold value. Note that the classification
rule can also be used to predict the labels of novel samples. For a
novel sample, its label should be assumed to be from C1 to Cq and the
corresponding silhouette value should be calculated by Eq. (1). Since
there exists only one class deserving the minimum average distance
for the novel sample, only one positive silhouette value can be obtained.
In contrast, in our experiments if a novel sample is assigned to the class
that returns a positive silhouette value causing the predicted label to be
different from the actual class label, we can state that amisclassification
has occurred. Here, we may also find that the efficiency of silhouette
statistics depends on two factors: (1) the distancemetric used in silhou-
ette statistics, and (2) the sample pattern⇀ej. For the distancemetric, we
implement two groups of two distance metrics to compare the effects
on silhouette statistics. The first one is the distance-based measures,
and the other one is the correlation-based measures (Table 1). Besides,
we also discuss how the pattern of ⇀ej can be chosen by genetic algo-
rithms in the next section.

2.2. Genetic algorithm for gene selection

In order to select an optimal subset of features from a large fea-
ture space, we employ the GA approach. The genetic algorithms use
two selection methods including stochastic universal sampling
(SUS) and roulette wheel selection (RWS). In addition, two tuning
parameters, Pc: crossover rate and Pm: mutation rate, are used to
tune one-point and uniform crossover operations to evolve the pop-
ulation of individuals in the mating pool. The format of chromo-
somes used to carry subsets of genes is defined by the string Si, Si=
[G, g1, g2,… gGmax], where gi is the expression level of gene i and G de-
notes the number of predictive genes to form sample patterns in the
classification and is limited to a predefined range from Gmin to Gmax.
In our algorithms, we will try as many chromosomes as possible to
choose the optimal gene subset by scoring those chromosomes
using the fitness function of f(Si)=(1−Et)×100, where Et means
the training error rate of leave-one-out cross validation (LOOCV)
test. In order to have an unbiased estimation of initial gene pools,
our algorithms will set 20 gene pools to run the following steps.

Step 1: For each gene pool, the evolution process will execute 100
generations and each generation will evolve 100 chromo-
somes in which the size of genes will range from Gmin=15
to Gmax=25.

Step 2: According to the gene indices in each chromosome, only the
first G genes are picked from g1, g2… gGmax to form sample
patterns for classification. In other words, the dataset is
then represented by a matrix XG×m form with rows for the
G genes and columns for the m samples.

Step 3: In order to estimate the fitness score for each chromosome,
the training dataset XG×P of P training samples is used in
the following program to evaluate how well those samples
can be correctly classified under silhouette statistics.

1. FOR each chromosome Si //i=1 to 100
2. FOR each training sample with class label lj
3. Build up discriminant model with the remaining training samples

for LOOCV test
4. IF (Sil(⇀ej)b0)

Table 1
Distance metrics.
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di, dj are the rank vectors of e
→

i and e
→

j , respectively.

Note: (1) The vector ⇀ei=(0,2, −2,3, −3) is transformed into the rank vector ⇀di=
(3,4,2,5,1) where the smallest value has rank 1 and the largest number has rank 5. (2)
ēi=(1/G)∑Gei

(G).
Distance-based measures: Euclidean, Minkowski; correlation-based measures: 1-Spearman,
1-Pearson.
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Fig. 1. This figure showed that roughly 1000 genes were more highly correlated with
the class distinction than would be expected by chance.

160 T.-C. Lin et al. / Gene 518 (2013) 159–163



Download English Version:

https://daneshyari.com/en/article/5906656

Download Persian Version:

https://daneshyari.com/article/5906656

Daneshyari.com

https://daneshyari.com/en/article/5906656
https://daneshyari.com/article/5906656
https://daneshyari.com

