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Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design person-
alized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial
amount of gene deletions and knockdowns required. Computational techniques to predict new interactions
based only on network topology have been developed in network science but never applied to GI networks.
We show that topological prediction of Gls is possible with high precision and propose a graph dissimilarity index
that is able to provide robust prediction in both dense and sparse networks.

Computational prediction of Gls is a strong tool to aid high-throughput GI determination. The dissimilarity index
we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A genetic interaction (GI) or epistasis is detected if a double mutation
generates a deviation in phenotype that is worse (negative interaction)
or better (positive interaction) than that generated by the combination
of the single mutant phenotypes [1]. GIs play an important role in
untangling the relationships between genotype and phenotype,
advance our understanding of human disease [2-4] and improve our
ability to design personalized treatment plans. Nevertheless, mapping
every Gl is far from complete, even in model organisms. Here is where
computational prediction of novel GIs comes into play.

Computational techniques to predict new Gls aim to reduce costs
incurred by their experimental detection and target good candidates
to test in the lab. Current attempts to computationally predict Gls
depend on biological information that, for some organisms, might not
be available. Examples of these efforts are the integration of data that
characterize epistasis, such as expression, physical interaction, or func-
tional annotations to train probabilistic decision trees [5] or to apply
logistic regression [6]. Other endeavors involve the overlap of data
coming from different networks (Protein Interaction Networks, Gene
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Ontology Networks, Co-expression Networks, etc.) and the application
of random walks [7] or an ensemble of classifiers [8].

We propose the exploitation of the biological information stored
exclusively in the network topology that should be shaped by the geno-
mic properties characterizing the organism under investigation. To this
effect, parameter-less neighborhood-based (both general-purpose and
bio-inspired) and network-embedding techniques are applied to the
GI networks (GINs) of two different organisms (worm and yeast) the
first of which is sparser than the second one. The reliability of these
techniques and the impact of sparse network architecture on their
prediction performance are analyzed and discussed. We also propose
a graph dissimilarity index that proves better performance in candidate
Gl prediction, for the networks here considered.

2. Data and algorithms
2.1. Datasets

This work focuses on negative interactions due to their known
impact on essential biological functions [9]. The datasets used corre-
spond to Gls in Saccharomyces cerevisiae (yeast) and Caenorhabditis
elegans (worm), detected by [10,11] respectively and downloaded from
BioGRID 3.1.85 [12].

Self-interactions and redundant links were removed from these
datasets to constitute a Worm GIN of 457 nodes and 1242 links (average
node degree = 5.44) and a Yeast GIN of 3842 nodes and 52179 links
(average node degree = 27.16). Notice the latter is ~5 times denser
than the former.
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2.2. Neighborhood-based prediction

General-purpose neighborhood-based techniques have been created
for link prediction in different kinds of networks: social, roadmaps,
citation, collaboration, etc. [13]. Bio-inspired techniques were created
to either assess reliability of interactions in biological networks [14] or
predict protein function [15]. Later, these techniques were applied
to protein interaction prediction [16,17]. Both approaches rely on the
number of neighbors that two non-directly connected nodes have and
assign a likelihood score to this pair of nodes based on the equations
listed in Table 1.

The simplest techniques are Jaccard (JC) [18], Common Neighbors
(CN) and Preferential Attachment (PA) [19]. JC assigns higher likelihood
scores as the set of common interactors that coincides with the set of all
available neighbors and CN does the same for pairs of nodes that share
many interactors (see Eqs. (1) and (2)). PA, on the other hand, gives
high scores when both nodes have a large number of neighbors: if one
of the nodes has a low number of interactors, the score is reduced (see
Eq. (3)). In contrast, Adamic & Adar (AA) [20] and Resource Allocation
(RA) [21] are two similar indices that give more importance to CNs
with low degree (see Egs. (4) and (5)).

Interaction Generality (IG1) [22] is based on the fact that partners of
sticky proteins and self activators do not interact with anything else in
the network (see Eq. (6)). Czekanowski-Dice Dissimilarity (CDD) [23]
and Functional Similarity Weight (FSW) [15] have their basis in direct
and indirect functional association: the more common neighbors
the two nodes have, the more they are likely to share function or be
involved in the same processes (see Egs. (7) and (8)). CDD is a dissim-
ilarity index, meaning that if two nodes are similar, CDD is close to
zero. On the contrary, FSW is a probability and the closer it is to 1, the
more likely it is that two nodes interact. Several other bio-inspired
techniques have been proposed but they are computationally expensive
[24] and both FSW and CDD have proven to be the best options [14,16].
We took IG1 into account because it is considered a pioneering tech-
nique in the bio-inspired category.

2.3. Network embedding prediction

Network embedding prediction is based on the idea that the net-
work topology is shaped in a space of high dimensions and that, once
its components are embedded into a reduced space, interacting nodes

Table 1

Table of equations for the neighborhood-based techniques. Techniques marked with a G
correspond to general-purpose neighborhood-based approaches, while techniques marked
with a B correspond to bio-inspired approaches. x and y are network nodes; ['(x) refers to
the set of neighbors of x, whereas y(x) refers to the set of neighbors of x including x;
|T(x)] refers to the cardinality of set I[(x) and A is the symmetric set difference. The numbers
in parentheses identify each equation throughout the text.

Technique Equation

(G) Common |IC(x)NC(y)| (1)
neighbors

(G) Jaccard [FE)NTW)I/T(x)UL ()] (2)

(G) Preferential T[T ()] 3)
attachment

(G) Resource 2_sereonre 1/IT(s)] (4)
allocation

(G) Adamic & Adar 3 serxnrey)1/10g(IT(s)]) (5)

(B) IG1 1 plus the number of nodes that directly interact withxory (6)

and nothing else in the network.
(B) CD-Dist [Y(x) Ayl / (V)UYW + YY)D (7)
(B) FSWeight lyE)NYW/ (Iv(x)— (8)

YWI + 2vE)NYW)L 4+ M) x RNV / (v(y)—
VX + 2N+ Ny))

where Ny = max(0, nay — |'Y(x)|) and ng, is the average
node degree of the network

are mapped close to each other [25]. Thus, nodes that are not connected
in the original network but that are close to each other in the low-
dimensional space are likely to interact.

This type of prediction consists of choosing a graph metric and
computing all-pair distances between nodes in the network to generate
a distance matrix D. The matrix is mapped to a reduced space by extrac-
tion of its highest eigenvalues and eigenvectors, obtained via singular
value decomposition (SVD), which are used to recover the coordinates
of the nodes in the low-dimensional space. We note that SVD can be
applied to D or to its centered version. In the first case we obtain a
non-centered embedding and the algorithm's time complexity is:
O(N?), where N is the number of network nodes; in the second case we
obtain a centered embedding and the time complexity is the same as
for matrix centering: O(N?). Then, a node-proximity estimation is com-
puted in the reduced space and the distances between non-directly
connected nodes correspond to their assigned likelihood scores.

Two network embedding techniques are applied in this work:
Isomap (ISO) [16,26] and Minimum Curvilinear Embedding (MCE)
[27]. ISO computes all-pair shortest-path distances to generate D,
whereas MCE extracts the Minimum Spanning Tree (MST) out of
the network and then computes all-pair shortest-path lengths over it.
At this point, SVD can be applied to the non-centered D (ncISO and
ncMCE) or to its centered version (cISO and cMCE). Once D is mapped
to the space of low dimensions, and the coordinates of the nodes are
recovered, the network is reconstructed and the proximity estimation
of choice (in this case the shortest-path over the network) is computed
to assign scores [28]. We clarify that the network embedded in
the reduced space acquires weights for its edges. These weights corre-
spond to the Euclidean distance between the respective connected
nodes.

To determine the best dimension to embed the network into,
we adopted two approaches recently proposed by Cannistraci and
colleagues [28]: dimension determination by Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC, Fig. 1A) and by Resolution
(Res, Fig. 1B).

In the AUC approach (based on the work of You et al. [16] in 2010),
the network is embedded into dimension 1 and the distances between
all nodes are computed in the reduced space. These distances are sorted
by increasing length and a threshold ¢ is varied from 0 to the longest
distance to quantify the number of True Positives (links from the origi-
nal network that pass the € cut), False Negatives (links from the original
network that do not pass the € cut), True Negatives (non-directly
connected nodes that do not pass the € cut) and False Positives
(non-directly connected nodes that pass the € cut). With these num-
bers at each €, we can compute the True Positive Rates and False Positive
Rates and generate a ROC curve. The process is repeated for higher
dimensions, until the difference between the AUCs for dimension dim
and dimension dim-1 is less than 0.001 (resulting in dim as the selected
dimension, see Fig. 1A). In several tests we found that 0.001 is suffi-
ciently small to suggest that no better performance would be achieved
if nodes were mapped to higher dimensions, for this reason we chose
it as a stopping flag in the AUC criterion. The problem with this
approach is that it takes the original network as ground truth, which
may not be accurate given the amount of non-real interactions included
in the topology due to experimental bias or defects [29,30].

The Res approach addresses the above-mentioned issue. The best
dimension according to this criterion is the one that provides good
discrimination between good and bad candidates for interaction,
i.e. the more different the distances in the reduced space, the higher
the resolution and the better the dimension. Application of Res requires
the use of Eq. (9). If scoresg;n, is the set of scores assigned to the candi-
date interactions in dimension dim, unique(scoresg;,) is a function that
discards the duplicates in the set and returns only its distinct elements.
Later the standard deviation o of the unique scores is computed to
assess the quality of the resolution provided to finally divide the result
by dim to penalize high dimensions, which have been shown not to
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