

Article

Temperature-programmed desorption and surface reaction studies of CO on Co_2C

Yanpeng Pei^{a,c}, Yunjie Ding^{a,b,*}, Juan Zang^{a,c}, Xiangen Song^{a,c}, Wenda Dong^{a,c}, Hejun Zhu^a, Tao Wang^a, Weimiao Chen^a

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China

^b State Key Laboratory for Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China ^c University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 7 April 2013 Accepted 10 May 2013 Published 20 August 2013

Keywords: Cobalt carbide Passivation layer Carbon monoxide adsorption Hydrogenation Alcohol

1. Introduction

ABSTRACT

Cobalt carbide (Co₂C) samples were prepared by carburizing Co with CO at 473 K for in excess of 400 h and were characterized by X-ray diffraction, transmission electron microscopy, CO temperature-programmed reduction, CO temperature-programmed desorption (CO-TPD), and CO temperature-programmed surface reaction. The prepared Co₂C samples were composed of bulk Co₂C with a surface CoO passivation layer. The passivation layer could be removed by reaction with CO at 477 K. CO desorbing at low temperature in CO-TPD experiments likely originated from chemisorbed CO. CO desorbing at high temperature was likely due to residual CO within the Co₂C crystal lattice. CO adsorbed on Co₂C reacted with H₂ to form alcohol.

© 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Transition metal carbides behave similarly to noble metals in heterogeneous catalysis and have received much attention since the first report by Levy and Boudart [1]. They exhibit outstanding performance in hydrogenation [2], ammonia synthesis [3], hydrodesulfurization [4], hydrodenitrogenation [5], water-gas shift reaction [6], hydrocarbon isomerization [7], and methane reforming [8]. However, few literatures were reported about the fundamental studies on the properties of transitional metal carbide catalysts. This is particularly so for cobalt carbide (Co₂C), whose formation is regarded as a deactivation sign of Fischer-Tropsch catalysts [9,10]. Ding et al. [11,12] recently reported that the generation of C_1-C_{18} linear alcohols over activated carbon-supported Co catalysts could occur via the formation of Co₂C. The presence of Li or La tuned the formation of Co_2C and thus influenced the selectivity of the alcohols [13–16].

CO temperature-programmed desorption (CO-TPD) and CO temperature-programmed surface reaction (CO-TPSR) are widely used surface sensitive techniques. They can provide information about CO adsorption and the reaction mechanism of different catalyst systems [17]. Volkov et al. [18] suggested that Co_2C could adsorb CO without rupture, in such a way that formed alcohols. To our knowledge, the adsorption properties of CO on Co_2C have not yet been reported. Optical spectroscopy is of limited use in investigating CO adsorption on Co_2C because Co_2C is opaque in the infrared region. The adsorption and reaction of CO on Co_2C can be investigated using CO-TPD and CO-TPSR, to better understand its catalytic behavior.

Herein, Co_2C was prepared according to the literature [19] and characterized by physical and chemical methods. CO ad-

^{*}Corresponding author. Tel/Fax: +86-411-84379143; E-mail: dyj@dicp.ac.cn

DOI: 10.1016/S1872-2067(12)60615-9 | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 34, No. 8, August 2013

sorption and reaction on Co_2C were then investigated using CO-TPD and CO-TPSR.

2. Experimental

2.1. Co₂C preparation

 Co_3O_4 (10.0 g) was reduced in flowing H₂ (60 ml/min) at 523 K for 4 h and then carburized in flowing CO (60 ml/min) at 493 K. Samples carburized for 468 and 605 h were denoted Co_2C -A and Co_2C -B, respectively, and were investigated for comparison. After reaction, samples were quenched to room temperature under Ar and then passivated in flowing 1 vol% O₂/Ar (60 ml/min) for 2 h before exposure to the atmosphere.

2.2. Characterization

X-ray diffraction (XRD) analysis was performed on a PANalytical X'Pert PRO diffractometer, using Cu $K_{\alpha 1}$ radiation at an operating voltage and current of 40 kV and 40 mA, respectively. The scan range was $2\theta = 20^{\circ}-60^{\circ}$, and scan speed was 6° /min.

High resolution transmission electron microscopy (HRTEM) measurements were carried out using a FEI Tecnai G2 F30 microscope at an accelerating voltage of 300 kV.

CO-temperature-programmed reduction (CO-TPR) was carried out using a Micromeritics Autochem 2910 apparatus. A 200 mg sample was treated in flowing CO (20 ml/min), and the reduction temperature was increased from room temperature to 573 K at a rate of 5 K/min. CO consumption and CO_2 generation were recorded with an Omnistar 300 quadrupole mass spectrometer.

CO-TPD was carried out on the same instrument. A 200 mg sample was used for each test. The samples were first pre-reduced in-situ in flowing CO, and the temperature was raised from room temperature to 523 K at a rate of 5 K/min and maintained there for 1 h. Samples were purged with He at 523 K for 0.5 h, cooled to 323 K under flowing He, and purged with He for a further 40 min to remove adsorbed species. CO was pulsed over pre-treated Co₂C samples at 323 K until the TCD signal reached a constant value. Samples were flushed with He for 10 min, and the temperature linearly increased from 323 to 1173 K at 5 K/min under flowing He. The CO-TPD result of a 200 mg Co₂C-A sample under He was used as a blank experiment. Desorbed exit-gases were analyzed with an Omnistar 300 quadrupole mass spectrometer.

CO-TPSR was carried out on the same instrument. Sample (200 mg) was pre-reduced in flowing CO at 523 K for 1 h, purged with He at 523 K for 30 min, and cooled to 323 K. CO adsorption was carried out at 323 K by pulsing CO until the TCD signal reached a constant value. Samples were flushed with He for 10 min, and 10% H₂/Ar was allowed to flow through the sample bed. The temperature was increased to 1000 K at 5 K/min, and mass spectrometry was used for detection.

3. Results and discussion

3.1. XRD and TEM

Figure 1 shows XRD patterns of Co₂C-A and Co₂C-B. Both samples exhibit five identical diffraction peaks at 2θ = 37.0°, 41.3°, 42.5°, 45.7°, and 56.6°, ascribed to the characteristic peaks of Co₂C (PDF 01-072-1369). No peaks of Co or CoO are observed, indicating that the bulk sample phase was Co₂C.

Figure 2 shows representative HRTEM images of Co₂C-A. Figure 2(a) shows a lattice spacing of 2.16 Å, ascribed to the (111) plane of Co₂C (PDF 01-072-1369). The lattice spacing of 2.46 Å in Fig. 2(b) is ascribed to the (111) plane of Co₀ (PDF 00-009-0402). Combined with XRD results, it suggests that samples were composed of bulk Co₂C with a surface Co₀ passivation layer.

3.2. CO-TPR

The passivation layer is reported to impact on the adsorption and reaction behavior of transitional metal carbides, and is typically removed before reaction [20,21]. The reduction behavior of the passivation layer of Co₂C-A was investigated by CO-TPD, as shown in Fig. 3. The CO consumption peak is at 477 K, and a CO₂ peak was simultaneously generated. This suggests that the passivation layer may have been reduced by the presence of CO.

3.3. CO-TPD

Figure 4(a) shows CO-TPD profiles of Co_2C -A and Co_2C -B, in which there exist two peaks for each sample. Peaks of Co_2C -A

Fig. 1. XRD patterns of Co₂C samples.

Fig. 2. HRTEM images of Co₂C-A. The circled region in (a) is shown at higher magnification in (b).

Download English Version:

https://daneshyari.com/en/article/59078

Download Persian Version:

https://daneshyari.com/article/59078

Daneshyari.com