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In 1974, Takeo Maruyama deduced that neutral mutations should, on average, be older than deleterious or ben-
eficial ones. This theory is based on the diffusion approximation for a branching process, which considers muta-
tions independently of one another and not as multiple groups of interconnected mutations with strong linkage
disequilibrium (haplotypes). However, mammalian genomes contain thousands of haplotypes, in which benefi-
cial, neutral, and deleterious mutations are tightly linked to each other. This complex haplotype organization
should not be ignored for estimation of allelic ages. We employed our GEMA computer simulation program for
genome evolution to re-evaluate Maruyama's phenomenon inmodeled populations that include haplotypes ap-
proximating real genomes. We determined that only under specific conditions (high recombination rates and
abundance of neutral mutations), the deleterious and beneficial mutations are younger than neutral ones as pre-
dicted byMaruyama. Under other conditions, the ages of negative, neutral, and beneficial mutationswere almost
the same.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Investigations of “allelic age” began in 1970s. This termwas defined
as the number of generations a mutant allele has persisted in the popu-
lation since its first occurrence [7,10–12]. Initially, the prediction of alle-
lic age relied upon mathematical modeling—a diffusion approximation
for a branching process. In 1973, Kimura and Ohta [7] inferred that the
“average ages of neutral alleles, even if their frequencies are relatively
low, are quite old.” Specifically, they demonstrated that a neutral muta-
tion whose current frequency is 10% has an expected age (measured in
generations) roughly equal to the effective population size Ne. This re-
sult complicates experimental verification of allele age predictions.
Thus, allelic age estimates currently come from either mathematical
modeling or indirect experimental hints about the distribution patterns
of mutations with various population frequencies. In 1974, Takeo
Maruyama [11] modeled semidominant mutations and made a princi-
pal prediction that neutral mutations, on average, are significantly
older than both deleterious and beneficial alleles. This prediction has
been widely accepted and became an important landmark in this field.
A year after Maruyama's paper, Wen-Hsiung Li [10] inferred the age
of deleteriousmutations having various degrees of dominance. He dem-
onstrated that the mean age decreases with increasing selection coeffi-
cients against heterozygotes. Allelic age has been nicely reviewed in the
late 1990s [5] and early 2000s [18]. The allelic age has been indirectly
estimated in several independent experimental studies that statistically

examined the distributions of multiple mutant alleles. Slatkin and
Rannala [17] estimated the allelic age by use of intra-allelic variability.
Further, Rannala and Reeve applied high-resolution multipoint
linkage-disequilibrium mapping [14], while Genin and colleagues ana-
lyzed shared haplotypes of rare disease mutations [4]. Last year, Kiezun
and co-authors [6], concluded from analysis of large-scale population
sequencing studies and computer simulations, that deleterious alleles
in the human genome are on average younger than neutral alleles of
the same frequency. However, the allelic ages for neutral, deleterious
and beneficial mutations are still unclear because the direct measure-
ment of the age is impossible.

Recentwhole-genome sequencing of numerous individuals revealed
that each human individual bears millions of mutations [1]. These mil-
lions of mutations form intricate patterns of haplotypes, where neutral,
beneficial, and deleterious mutations are tightly linked with each other
and strongly influence the ages of their neighbors. A haplotype structure
for a gene strongly depends on the local recombination rate, whichmay
vary thousands of times from one chromosomal location to another [2].

In order to examine the role of haplotypes on the allelic age, we ap-
plied whole-genome computer simulations of SNP dynamics using our
GEMA program package. A “naturally occurring” intense influx of 40
novel mutations per person has been applied in this computer model-
ing. Such intense mutation influx generated thousands of SNPs in each
modeled individual. The time of the arrival for each mutation has been
recorded and used for the calculation of its age. These simulations
allow the direct measurement of the average age of mutations with
high accuracy. In these computational experiments, we changed various
parameters such as recombination rate, degrees of dominance, and dis-
tributions of mutations by their selection coefficients. These various
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conditions drastically altered the patterns of haplotype ensembles in
the modeled genome. We demonstrated that Maruyama's effect
appears only for specific sets of parameter ranges and quantitatively
described its variation under different conditions.

2. Materials and methods

Computer simulationswere performed using a newv3 release of our
Perl programGEMA_v3.pl, named Genome Evolution withMatrix Algo-
rithms (GEMA). The previous release (GEMA_v2.pl) has been described
in detail [13]. Both v2 and v3 versions are freely available from our web
site: http://bpg.utoledo.edu/~afedorov/lab/GEMA.html. The V3 release
of GEMA has only a small addition compared to v2, which, upon crea-
tion of a new mutation, records the time of its arrival (measured in
generations, as $g variable inside a multidimensional array @matrix).
Finally, the age of every SNP is periodically recorded into a new fifth
column of the GEMA backup file.

In the described simulations with GEMA_v3.pl, we always used the
following parameters: (1) unsaturated mode; (2) duration: 10,000
generations; (3) population size (N = 100); (4) number of offspring
permating pair (α=5); (5)mutation rate per gamete (u=20); (6) re-
combination rate (r = 1 or r = 48); (7) dominance coefficient (h = 0,
h=0.5, or h=1); (8)MatingScheme: permanent randommale–female
pairs; and (9) upon generation of a randommutation, a randomnumber
generator imbedded into GEMA program assigned a selection coeffi-
cient to it either according to the “experiment B” or “experiment C” dis-
tributions demonstrated in Fig. 1. Experiments B and C were first
described in our paper [13], and we kept their original names in this
paper for clarity. Those two experiments were chosen for the ease of in-
terpretation of the results. The effects of all deleterious mutations in
these experiments are equal to each other since their selection coeffi-
cients (s) always equal to −1. Consequently, all beneficial mutations
are also equal to each other (s = +1 for all beneficial mutations).

Our GEMA modeling approximates natural conditions in a way in
which we consider thousands of genes in genome of virtual individuals
and the real influx of novelmutations (which is about 40newmutations
per individual). As we demonstrated in Qiu et al. [13], several hundreds
of genes in the modeling genome have approximately the same effect
on SNP dynamics as 25,000 genes observed in humans. In addition,
the length of modeling genes does not significantly influence the SNP
dynamics. Due to these reasons and for the speed of computations, we
used a 0.6 Mb long DNA segment with a random nucleotide sequence
as the genome for modeled individuals. Thousands of nucleotide-long
segments of this sequence were used to model 600 genes. The simplifi-
cation of our modeling, compared to real conditions, is that all genes in
our simulations have the same properties. This includes the same re-
combination rate, same frequencies of deleterious, beneficial, and

neutral mutations and the same dominance coefficient. In real human
genes, these parameters vary significantly from gene to gene. However,
these simplifications allow us to evaluate the influence of each parame-
ter on the dynamics of SNP in the population.

The snapshot of all SNPs in all modeled individuals was recorded
after every 1000 generations as backup files. These backup files contain
the following information on each SNP: position; selection coefficient;
mutant nucleotide; modeled individuals bearing this SNP including
location on a maternal or paternal DNA; and the time of SNP arrival
(in generations). Backup files was processed with our Perl scripts
AllelicAge_10bin.pl and AllelicAge_csv.pl, that calculate the frequency
of each SNP, its selection coefficient and the time of its arrival, and pres-
ent this information in an output table in Excel format (Supplementary
Materials, Tables S1 and S2). These tableswere used to calculate the dis-
tribution of SNPs by their population frequency, the number of SNPs
with particular selection coefficient within a designated range of popu-
lation frequencies (from10% to 30% range or in 40%–60% range), and the
distribution of SNPs within a particular range of population frequency
by their age. The SNP frequency stands for the frequency of the mutant
alleles in the entire modeled population.

3. Results

Computer simulations of whole-genome SNP dynamics were per-
formed using the program GEMA_v3.pl. In these computations, the fol-
lowing three parameters were always the same for every experiment:
(1) population size was 100 modeled individuals (N = 100); (2)
every modeled individual had 40 novel mutations (μ = 20 mutations
per gamete); and (3) the mating scheme was a default GEMA
choice—permanent random male–female pairs (MatingScheme = 1)
with 5 offspring per mating pair (α=5). Also, genomes of modeled in-
dividuals always consisted of 600 genes each 1000 nucleotide long. [As
we discussed previously, the exact number of genes above a certain
threshold (~200) does not significantly influence SNP dynamics [13]].
Variable parameters for each computational experiment were the fol-
lowing: (1) number of recombination events per gamete (r) was either
r=1 or r=48; (2) gene dominance coefficient (h) for every gene was
either h= 0 (dominant genes), h= 0.5 (co-dominant genes), or h= 1
(recessive genes); and (3) distribution of mutations by their selection
coefficients corresponded to the “Experiment B” or “Experiment C”
shown in Fig. 1. We specifically used r = 48, because it represents the
average number of pieces of paternal and maternal genomes in a
human gamete [13]. The alternative r = 1 settings model the regions
with low recombination rate frequency, which are abundant in the
human genome.

The distribution of SNPs by their age for different modeled parame-
ters is shown in Fig. 2. This distribution has been combined for 12
independent experiments. The total number of all SNPs in specific ex-
periment varied from 152,582, for simulations with r = 1, h = 0, and
“experiment C”, to the 505,970 SNPs for r = 1, h= 1, and “experiment
B” simulations. Since the number of SNPs varies from one experiment to
another, we performed their normalization by division by the total
number of SNPs in each experiment. Hence, the results in Fig. 2 are pre-
sented as relative SNP frequencies counted within 10-generation bins.
The details for every SNP from these data are provided in the supple-
mentary Table S1. In all experiments the youngest SNPs were the
most numerous ones, as expected from population genetics. We ob-
served that, when the recombination rate was high (r = 48), the older
SNPs were more abundant than when the recombination rate was low
(r = 1). A special case that does not follow this rule is provided by the
combination of low recombination rate (r = 1) with recessive domi-
nance coefficient (h=1). Aswe explained previously [13], these specif-
ic conditions may result in an un-stable number of SNPs in the
population, periodically producing gigantic peaks of SNP numbers.

The calculated mean age of SNPs, for which population frequencies
belong to a particular range (10%–30% or 40%–60%) is shown in Fig. 3.

Fig. 1. Distribution of computer-generated mutations by their selection coefficients
(s-values). B—“Experiment B” models a discrete distribution of mutations characterized
predominantly by neutralmutations, occurring at a frequency of 90%within thepopulation,
while the remaining 10% is characterized by deleterious and beneficial mutations occurring
in a ratio of 9:1. C—In “Experiment C,” the ratio of deleterious to beneficialmutations occurs
again in the ratio of 9:1. However, thismodel is characterized by a preponderance of muta-
tions with deleterious effects (81%). Neutral mutations in this case comprise 10% and ben-
eficial - 9% of overall nucleotide changes occurring within the population.
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