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Precise characterization of chromatin states is an important but difficult task for understanding the regulato-
ry role of chromatin. A number of computational methods have been developed with varying levels of
success. However, a remaining challenge is to model epigenomic patterns over multi-scales, as each histone
mark is distributed with its own characteristic length scale. We developed a tiered hidden Markov model and
applied it to analyze a ChIP-seq dataset in human embryonic stem cells. We identified a two-tier structure
containing 15 distinct bin-level chromatin states grouped into three domain-level states. Whereas the
bin-level states capture the local variation of histone marks, the domain-level states detect large-scale
variations. Compared to bin-level states, the domain-level states are more robust and coherent. We also
found active regions in intergenic regions that upon closer examination were expressed non-coding RNAs
and pseudogenes. These results provide insights into an additional layer of complexity in chromatin
organization.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a multi-cellular organism, virtually all the cells share the same
genome, but each cell-type has a distinct gene expression pattern.
Chromatin provides an important layer of cell-type specific transcrip-
tional control [1,2]. The basic unit of chromatin is the nucleosome,
which wraps a 147 bp sequence of the genome. The nucleosome
contains two copies each of four core histone proteins: H2A, H2B, H3
and H4 [3]. Each histone has an N-terminal tail that can be covalently
modified at multiple positions. Distinct combinatorial patterns (also
known as chromatin states) play important roles in transcriptional
regulation [1,2]. As genome-wide histone modification data are being
generated in a rapid speed [4–13], there has been a growing interest
in developing computational methods to precisely define chromatin
states [10,14–18]. Previous methods have mainly focused on detecting
local chromatin state variation, whereas large-scale patterns (also
known as domains) remain poorly characterized. Nevertheless, epige-
netic domains have been identified in various data-types [19–25]. To
systematically identify domain patterns from multiple histone marks,
we recently developed a hidden Markov model, treating each gene as
a separate unit [26]. By applying this method to analyze a collection

of ChIP-seq datasets in 27 human cell lines, we found that chromatin
states can be used to classify cell-types with high accuracy [27].

Rather than focusing on each length scale separately, it is desirable
to characterize multi-scale chromatin states in a single computational
framework. To this end, we present a new approach called tiered
hidden Markov model (THMM). We tested this approach by analyzing
a publicly available ChIP-seq dataset from the Roadmap Epigenome
Project [8]. Our analysis identified a two-tiered structure of chromatin
states, which we call the bin- and domain-level states. Whereas
bin-level states can effectively capture local (200 bp) variation of his-
tone modification patterns, the domain-level state detects large-scale
(>1 Kb) variations. We show that this two-tier characterization is
useful for better understanding of the regulatory role of chromatin.

2. Results

2.1. Dataset collection and pre-processing

ChIP-seq data from the H1 human embryonic stem (ES) cell line
was obtained from the Roadmap Epigenome Project [8] (http://www.
epigenomebrowser.org/). Five modifications (H3K4me1, H3K4me3,
H3K9me3, H3K27me3 and H3K36me3) with well-known biological
functions were chosen for analysis. Raw sequence reads were mapped
to non-overlapping 200 bp bins via BEDTools [28] and normalized to
have the unit of reads per million reads (RPM). Bins that overlapped
50% or more with known repetitive regions [29] were removed due
to possible alignment issues. After removing these highly repetitive
regions, the remaining 99.97% bins were analyzed further.
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For simplicity, we focused on chromatin state organization around
genic regions, and truncated the genome by keeping only the promot-
er and transcribed regions of protein-coding genes according to
Refseq [30]. To be precise, in this study we use the term ‘promoter’
to include the region 2 Kb upstream from the transcription start
site, whereas the ‘gene body’ is defined as the region from transcrip-
tion start site to transcription end site. We thus excluded most
intergenic regions, which consist of the majority of the genome,
from our initial analysis. This truncated genome contains a total of
6,332,441 bins (1.27 Gb).

2.2. Tiered chromatin states in human ES cells

We applied our THMM approach to characterize the chromatin
states on the truncated genome in human ES cells based on the five
histone modification marks mentioned above. Because of its smaller
size, we first determined the optimal number of bin-level states by
using the data on chromosome 22. Since the log-likelihood of the
model increases monotonically with model complexity, we used
permuted data as a control, and evaluated the difference of log-
likelihood for observed and permuted data, which was generated by
randomly reordering all bin locations on chromosome 22 without
changing the corresponding sequence reads. This strategy is similar
to the gap-statistic commonly used for K-means clustering [31]. We
varied the number of bin-level states from three to twenty eight,
and found that the log-likelihood differences between the observed
and permuted data plateaus around K = 15 (Supplemental Fig. 1),
suggesting that the optimal number of bin-level states is around 15.
As an additional validation, we found that 94% of truncated genome
falls into one of the 15 most abundant combinatorial patterns
(Supplemental Fig. 2). We compared three non-degenerative tiered
structures that are consistent with this constraint, corresponding to
a “3 × 5” model (that is, three domains with five bin-level states
per domain), a “4 × 4 ” model, and a “5 × 3 ” model, respectively.
The “3 × 5” model has the best performance but quite similar to the
“5 × 3 ” model (Supplemental Fig. 3). For simplicity and interpret-
ability, we selected the “3 × 5” model as the final model. We then re-
fined the parameter value estimate by fitting the entire truncated
genome (Table 1) and used it for the rest of the analysis in this
paper (see Materials and methods for details).

We found certain similarities among the bin-level states associated
with a common domain-level state; most bin-level states within a do-
main share similar histone modification patterns. The bin-level states
associated with Domain 1 (States 1–5) are generally associated with
high levels of H3K27me3; Domain 2 (States 6–10) is generally absent
of all histone marks; while Domain 3 (States 11–15) is enriched with
H3K4me3 and H3K36me3 and depleted of H3K27me3 (Table 1 and
Fig. 2). Following our previous work [26,27], we annotated Domains
1–3 as non-active, null, and active, respectively.

Next we examined the overall distribution of the domain-level
states. The majority (95.6%) of the truncated genome is assigned to
the null domain (Fig. 3, Supplemental Fig. 4), which is also the largest
on average, with a mean length of 53.9 bins (10.8 Kb), but the domain
size is highly variable with a standard deviation (SD) of 79.3 bins

(15.9 Kb). In comparison, the active (average length ± SD: 5.4 ±
8.3 Kb) and non-active (average length ± SD: 2.3 ± 2.6 Kb) do-
mains are smaller on average, and also have less absolute variability
(though the relative variability is comparable). The null domains are
primarily associated with introns, whereas the non-active domains
are enriched in the promoter regions (Fig. 4).

While chromatin states are defined based on histone modification
data alone, they are useful only if the resulting annotations are also
functionally meaningful. It is well known that chromatin plays an
important role in gene regulation, and previous studies have shown
that active and inactive genes are associated with different sets of
histone marks [5]. For example, while H3K36me3 is enriched in highly
transcribed genes, the H3K27me3mark is associated with transcription-
ally inactive genes. To test whether our unsupervised chromatin state
annotation methods can recapitulate such differences, we analyzed an
ES RNA-seq dataset [32], focusing on domain-level states. Raw sequence
reads were processed as for the ChIP-seq data and scaled to reads per
million reads (RPM). The active domain (States 11–15) is indeed
enriched with significantly higher expression levels (average RNA-seq
level ± SD: 1.1E4 ± 8.3E4 RPM) compared to other domains (two sam-
ple t-test versus null and non-active domain p-values b 0.0001)
(Fig. 5A), followed by the non-active domains (average RNA-seq
level ± SD: 9.8E2 ± 1.7E4 RPM), and the null states have the lowest
transcription level (average RNA-seq level ± SD: 3.9E3 ±7.8E3 RPM).
These transcription associated changes are consistent with a role of
H3K27me3 in gene silencing [33]. Taken together, these results have pro-
vided a functional validation of our method.

Table 1
Mean-level ChIPseq counts (RPM) for each chromatin state in the final THMM.

Domain-level Non-active Null Active

Bin-level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H3K4me1 88.3 137.1 131.9 103.4 71.0 24.8 4.0 2.6 3.7 6.6 53.9 4.3 27.3 244.7 102.3
H3K4me3 23.1 194.4 1921.4 35.7 7138.4 16.9 15.0 14.8 15.1 15.2 22.1 15.3 16797.0 5273.4 2017.1
H3K9me3 9.2 148.4 7.5 5.5 5.4 5.3 5.0 2.8 13.2 4.6 77.7 6.0 6.1 398.0 6.3
H3K27me3 51.9 9151.6 1044.3 7.6 36.1 6.4 4.7 4.4 6.0 9.7 7.7 4.8 7.0 173.1 7.6
H3K36me3 6.2 44.5 4.4 7.6 2.4 9.2 23.8 3.3 6.0 2.7 80.2 138.8 4.6 614.1 15.2

Fig. 1. The topology of our THMM. Each bin-level state is represented by a circled
color-coded according to its corresponding domain-level state (represented by a box).
Note that transitions between different domain-level states can only occur via a special
bin-level state from each domain. States within the null domain are represented by the
color light gray; states within the active domain are shown in medium gray; and states
within the non-active domain are in dark gray.
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