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The diffuse literature on drop oscillation is reviewed, with an emphasis on capillary wave oscillations of
constrained drops. Based on the review, a unifying conceptual framework is presented for drop and bubble oscil-
lations, which considers free and constrained drops/bubbles, oscillation of the surface or the bulk (i.e. center of
mass) of the drop/bubble, as well as different types of restoring forces (surface tension, gravity, electromagnetic,
etc). Experimental results (both from literature and froma new set of experiments studying sessile drops in cross
flowing air) are used to test mathematical models from literature, using a novel whole profile analysis technique
for the new experiments. The cause of oscillation (cross flowing air, vibrated surface, etc.) is seen not to affect
oscillation frequency. In terms of models, simplified models are seen to poorly predict oscillation frequencies.
The most advanced literature models are found to be relatively accurate at predicting frequency. However it is
seen that no existing models are reliably accurate across a wide range of contact angles, indicating the need for
advanced models/empirical relations especially for drops undergoing the lowest frequency mode of oscillation
(the order 1 degree 1 non-axisymmetric ‘bending’ mode that corresponds to a lateral ‘rocking’ motion of the
drop).

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a drop or bubble; as common as a drop of rain or a pot of
boiling water, with applications as diverse as aerosolized medicines or
floatation of metal ores. Under the influence of surface tension, drops
and bubbles adopt spherical shapes if free from constraint and external

forces. In contact with a surface the constrained drop or bubble forms a
shape similar to a spherical cap, but potentially deformed by external
forces.

Now consider the oscillations of a drop or bubble. Deformed and/or
displaced, the drop/bubble is driven back towards equilibrium by a re-
storing force such as surface tension, gravity, etc. As will be discussed
shortly, the analytic works on drop/bubble oscillation have mainly fo-
cused on wave shapes that are axisymmetric about either an arbitrary
axis for a free drop/bubble, or about the normal of the solid surface for
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a constrained drop/bubble. Recently, the pace of applied research in
drop oscillations has increased, especially for the case of sessile drops.
Perhaps due to the more rapid pace, some confusion seems apparent
as to the precise physics governing drop and bubble oscillations, what
models exist to describe them, and how such models should be applied
(especially for non-axisymmetric oscillations). We believe the
source of this confusion is twofold: first, due to misunderstanding
of bulk (i.e. center of mass) oscillation and surface oscillation of
drops and their connection to each other; and second, due to a lack
of appreciation for the complexities of non-axisymmetric wave
shapes and the three-dimensional character of the drop surface.

The literature on drop/bubble (especially sessile drop) oscillation is
also diffuse, with no publication giving a categorizing framework for its
understanding. Considering the diffuse nature of the literature avail-
able, and the different possible cases of drop/bubble oscillation, this
paper first presents an overview of the present understanding of drop
and bubble oscillations, including mathematical models proposed to
predict resonant frequencies. This overview is categorized in terms of
free versus constrained drops, and in terms of axisymmetric versus
non-axisymmetric oscillations, with an emphasis on sessile (surface
constrained) drops. A framework for summarizing, categorizing and un-
derstanding drop/bubble oscillations is then given. A full profile process-
ing tool for the study of free or constrained drop/bubble oscillation is
introduced and its use illustrated in analyzing new experimental results
for sessile drops in cross flowing air. These new results are finally com-
binedwith those from literature to test variousmodels given in literature.

2. Status of understanding in literature

The new experimental work presented in this paper focuses on the
surface and bulk oscillations of sessile (i.e. constrained) drops driven by
cross flowing air and restored by surface tension, since it is an area of in-
terest to the authors [1]. As such, this literature review will focus on the
natural surface oscillations of drops opposed by surface tension. Little lit-
erature was found on oscillations opposed by gravity, though what was
found will be reviewed. Only one work was found studying (nearly)
pure bulk oscillations of constrained drops [2], and no works were
found studying pure bulk oscillations of constrained bubbles or free
drops/bubbles, likely due to their uncommon nature as will be discussed
below. This review does not consider forced oscillations in any great
detail, nor the effects of surface charge/electric fields on oscillation.

2.1. Axisymmetric and non-axisymmetric surface oscillations of free drops

The oscillation of free drops (those falling/floating freely in their
surroundings) has been studied since at least 1843, when Plateau re-
ported observing them following the breakup of falling fluid streams
[3]. Lord Rayleigh considered drops in vacuum, balancing surface
tension and inertial forces to arrive at a formula for the frequency
of axi-symmetric capillary wave oscillations of spherical drops [4].
Lord Kelvin [5] and Lamb [6] both considered oscillations balancing
inertia and gravity. Gravity waves are less predominant than capil-
lary waves for small drops as evidenced by the low Bond number
(~0.14 for a 1 mm drop of water in air). Lamb also expanded the cap-
illary analysis to drops or bubbles in an infinite medium of arbitrary
density [7], and to viscous drops [6], finding that for low viscosities
there is no effect on frequency. Finally, Landau and Lifshitz [8] and
(briefly) Lamb [6] have considered non-axisymmetric waves. In
terms of frequency, mathematical models can be categorized by
whether the restoring force for oscillations is surface tension or grav-
ity based. For surface tension restored oscillations, drop/bubble
oscillation models take the form of:

f ml ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

ρ1Vλml;γ

s
ð1Þ

where fml is the ordinary frequency (in Hz) of an oscillation mode of
degree l and order m, γ is surface tension, ρ1 is the density of the
drop/bubble, V is the volume of the drop, and λml,γ is the eigenvalue
of a surface tension based drop oscillationmode of degree l and order
m (a mode m-l oscillation). We give Eq. (1) in terms of volume here,
since the radius of the drop is poorly defined for a non-spherical
(cap) drop shape, and to allow comparison of frequencies for
constrained drops of the same volume with different contact angles.

The concept of oscillation eigenvalues will be used throughout this
paper since most models for drop/bubble oscillation follow the same
general form. The eigenvalue technique acknowledges the similar phys-
ics governing drop/bubble oscillations in multiple cases, and facilitates
comparison between the models. The eigenvalue depends on degree
and order number, as stated, and can also depend on fluid properties,
and contact angle or constraint type for constrained drops and bubbles.
The eigenvalue does not dependon surface tension,γ. The subscriptedγ
in Eq. (1) instead denotes that the deformations are restored by a sur-
face tension derived force.

For free drops/bubbles undergoing small amplitude oscillations
about a spherical shape eigenvalues are given by [7,9]:

λml;γ ¼ 3 lþ 1ð Þ þ ρ2=ρ1ð Þlð Þ
4πl l−1ð Þ lþ 1ð Þ lþ 2ð Þ ð2Þ

where ρ2 is the density of the fluid surrounding the drop/bubble.
Eqs. (1) and (2) combined return the formulae originally derived for
drops [4,6–8] and bubbles [7] by substituting ρ2 = 0 and ρ1 = 0,
respectively.

Eq. (2) is derived from first principles by considering each oscillation
mode as a spherical harmonic and using the properties of the related as-
sociated Legendre polynomials. Non-axisymmetric modes correspond
to non-axisymmetric (i.e. tesseral or sectoral) spherical harmonics,
resulting in parts of the drop oscillating non-axisymmetrically. As
Eq. (2) shows, these non-axisymmetric modes are degenerate, in that
they have the same frequency as the related axisymmetric (zonal spher-
ical harmonic) oscillations (i.e. the eigenvalue does not depend on
order, m). Eq. (2) also shows that mode m-0 is not allowed for drops
since it would equate to volume change of an incompressible fluid; it
is, conversely, allowed for bubbles. Mode m-1 is not allowed for either
free drops or free bubbles since it would amount to movement of the
bulk of the drop without any surface distortion, and therefore without
any restoring force. It can thus be stated that surface oscillation of a
free drop/bubble is generally decoupled from oscillation/motion of the
bulk of the drop/bubble.

Subsequent researchers have advanced the field with consider-
ation of higher viscosity inner and outer fluids (see, e.g., Morrison
et al. [10] andMiller and Scriven [11], the references therein, and ref-
erences in Bauer and Chiba [12]). Others have examined the com-
bined effects of capillarity and electromagnetism [4,10], indicating
that electromagnetic forces can affect (generally decreasing) the re-
storing force of oscillations. Non-spherical (but still axisymmetric)
equilibrium drop shapes have also been considered [13–15]. Finally,
large amplitude (non-linear) [15–18] axisymmetric and non-
axisymmetric drop oscillations have been researched. It is suggested,
at least at higher oscillation magnitudes, that the axisymmetric mode
shapes are unstable, tending toward non-axisymmetric modes [18].
Natarajan and Brown [17,18] have also studied resonant energy transfer
between different axisymmetric and non-axisymmetric modes of oscil-
lation, something which in general depends on the higher order (non-
linear) terms describing drop oscillation.

Consider now when gravity is the restoring force for oscillations.
Then free oscillation models take the form of [5,6]:

f ml ¼
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
R

1
λml;g

s
ð3Þ
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