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By extending the concept of an effective temperature, earlier introduced for sheared monodisperse suspen-
sions, we propose a continuum theory for sheared bidisperse suspensions. We show the theory for sheared
suspensions can be constructed from the theory for Brownian suspensions by replacing the temperature
with the effective temperature. Furthermore, we explore the validity of closure relations based on mean
field/free volume theory, by comparison with experimental data obtained for Brownian bidisperse suspen-
sions. In a recent paper, we have shown that the new theory, combined with the discussed closure relations,
is indeed a predictive theory.
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1. Introduction

Our research group is involved in a long-term research program on
the fractionation of food suspensions using membranes or microfluidic
devices [1–12] The purpose of the fractionation processes is to separate
bidisperse or polydisperse suspensions in several fractions of different

particle composition. One physical phenomenonwhich induces separa-
tion in polydisperse suspensions is shear-induced migration [13].

Shear-induced migration enhances greatly fractionation processes.
If a particle suspension is flowing in a narrow microchannel, a
non-uniform particle density profile develops [14,15]. The particles
tend to migrate towards the middle of the channel. Shear-induced mi-
gration at low particle Reynolds numbers, and if the height of the chan-
nel must be less than 50 times the particle radius to give a significant
non-uniformity, Hb50a. Furthermore, it takes a considerable length
(L>20 H) to have a fully developed (non-uniform) concentration
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profile [16–18]. This entrance length depends on the ratio H/a and on
the bulk particle concentration.

If the particle suspension is bidisperse, the larger particles have a
greater tendency to migrate. Hence, the suspension near the wall
gets enriched with smaller particles [19,15,20]. In the fractionation
processes one takes advantage of this enrichment. For, example one
can integrate a membrane in the wall of the microchannel down-
stream (at a distance about equal to the entrance length), which
allows passage of the smaller particles. If the transmembrane pres-
sure is well tuned, the smaller particles permeate through the mem-
brane, while the majority of the larger particles remain in the
microchannel. A sketch of this fractionation process with the relevant
length scale is sketched in Fig. 1.

Other fractionation processes split the flows at the outlet of the
microchannel, via an annular insert for example — which extracts
the part of the suspension enriched with the larger particles.
Shear-induced migration also plays a significant role in conventional
membrane separation processes [21]. It reduces the growth of a
cake layer of particles that are deposited on the membrane. This effect
is used in crossflow microfiltration, where strong shear flows with
strain rates of 1000 s−1 control the height of the cake layer. A typical
food applications using crossflow microfiltration is the clarification of
beer, where yeast cells and aggregates are separated from the beer
[9].

Designing the fractionation process, as sketched in Fig. 1, requires
proper values for channel height, H, entrance length L, wall shear rate
in the feed channel, and transmembrane pressure (TMP) etc. These
proper values of course depend on the particle sizes and concentrations.

Shear-induced migration is reasonably well understood for mono-
disperse suspensions flowing in microchannels or capillaries [22–26].
However, this is not yet the case for bidisperse suspensions. There
exists only one single paper on the theory for sheared, bidisperse sus-
pensions [27]. However, this theory is phenomenological, and has lit-
tle physical foundations.

Hence, for solving the design problem of the fractionation process
we have been exploring shear-induced migration in the last decade by
means of computer simulations [28,26].With particle based simulations
using Lattice Boltzmann we have focused on obtaining self-diffusion
coefficients at finite Reynolds numbers, and bidisperse systems, which
[29,30]. These particle based simulations are supposed to render closure
relations for continuum models, describing the fractionation at the
length scale of the membrane module [31,28]. Here, we follow the
same strategy by Brady and Morris, who have investigated shear-
induced diffusion at the particle scale using Stokesian Dynamics
[32,33], but the migration phenomenon is investigated at the continu-
um level [22–25]. This multiscale simulation strategy is advantageous,
because particle based simulations would take enormous computer

resources to solve the migration phenomenon on the scale of a
microchannel (H×L) [31,28].

In a recent reviewpaper [26], we have stated the notion that the the-
ory for shear-inducedmigration in strongly sheared,monodisperse sus-
pensions can be reformulated in terms of an effective temperature,
which is linear in the viscous stress. The effective temperature is a con-
cept from soft matter physics, used for describing the dynamics of
strongly driven softmatter systems [34–37]. The concept has proven es-
pecially powerful for driven, granular media. Thermodynamic theories
developed for Brownian, colloidal suspensions can often be ported to
driven granularmedia, just by replacing the temperaturewith the effec-
tive temperature (a.k.a. the granular temperature) [38–40]. In driven
granular media the effective temperature is linear with the square of
the particle velocity fluctuations.

Inspired by the success of the effective temperature concept in
granular media, researchers have tried to model sheared suspensions
in a similar way [41,22,42]. In these early studies the researchers have
attempted to link the particle stress tensor to the particle velocity
fluctuations, which has proven to give unsatisfactory results [43].
Here, the problem is that particle velocity fluctuations give an effec-
tive temperature, srate — while the particle stress tensor is linear
with the shear rate. In our review paper, we have stated that the con-
tinuum theory for sheared suspensions is more in line with thermo-
dynamic treatment, if the effective temperature is linear in the shear
rate. Such scaling has also been observed for other driven soft matter
systems [44,45].

Using recent work of Lemaitre [46], we will show below that this
linear scaling with the shear rate is due to the contribution of contact
forces to the particle stress tensor. Particle velocity fluctuations give
another contribution to the particle stress tensor, but become only
relevant in the inertial regime. Under Stokes flow conditions, contact
forces are predominantly due to hydrodynamic interactions. Using
the lubrication force approximation for the hydrodynamic interac-
tions, we show with micromechanical arguments that this leads to
the proper scaling of the particle stress. Furthermore, we show its
trace, the particle pressure, can be written as a product of the effec-
tive temperature and compressibility factor — similar to Brownian
suspensions.

Now, that the theory for shear-induced migration of monodis-
perse suspensions has been put on firm footings — the route towards
a theory for sheared, bidisperse suspensions appears straightforward.
Here, we follow the route taken earlier for bidisperse, driven granular
media [38–40].

However, for sheared suspensions other closure relations for
model parameters governing the dynamics are required. In our re-
view paper, we have analysed the existing closure relations for
sheared, monodisperse suspensions. Using mean field and free

Fig. 1. Sketch of the fractionation process of bidisperse suspension using shear-induced migration in a microchannel, with height Hb50a, and a membrane integrated in the wall
downstream of the channel, at a distance larger than the entrance length, L>20 H. Over the membrane there is a transmembrane pressure (TMP) which drags the smaller particles
to the permeate side of the membrane.
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