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A review of literature shows that the majority of papers cite a potentially incorrect form of the Cassie and
Cassie–Baxter equations to interpret or predict contact angle data. We show that for surfaces wet with a
composite interface, the commonly used form of the Cassie–Baxter equation, cos θc= f1 cos θ−(1− f), is
only correct for the case of flat topped pillar geometry without any penetration of the liquid. In general,
the original form of the Cassie–Baxter equation, cos θc= f1 cos θ1− f2, with f1+ f2≥1, should be used. The dif-
ferences between the two equations are discussed and the errors involved in using the incorrect equation are
estimated to be between ~3° and 13° for superhydrophobic surfaces. The discrepancies between the two
equations are also discussed for the case of a liquid undergoing partial, but increasing, levels of penetration.
Finally, a general equation is presented for the transition/stability criterion between the Cassie–Baxter and
Wenzel modes of wetting.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

A rough surface can be wet in one of twomodes, the Cassie–Baxter
mode [1–4] (for which parts of the interface under the drop is liquid–
vapor due to vapor remaining beneath the drop in the troughs of the
rough surface), or the Wenzel mode [5] (for which the entire solid
area under the drop is wetted). The works of Cassie and Cassie/Baxter
[1–4] have been greatly referenced in recent years, since their equa-
tion can be used to help describe the phenomenon of superhydropho-
bicity (extreme water repellency) displayed both by natural surfaces
(e.g. such as lotus leaves and ducks feathers) and by surfaces
manufactured using lithography, micromachining, etching, or similar

techniques. Superhydrophobic surfaces are surfaces with extremely
high contact angles and low contact angle hysteresis, commonly un-
derstood to be due to the low adhesion properties of the air remain-
ing below the drop in the Cassie–Baxter wetting mode.

A combined Web of Science and Google Scholar search1 returns
2686 papers referencing the works of Cassie and Cassie/Baxter
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1 Baxter, S.; Cassie, A. B. D. Journal of the Textile Institute Transactions 1945, 36, 67–90
was not indexed inWeb of Science, and so could not be searched there. A Google Schol-
ar search found only 35 references to this work, which were included. In general, Web
of Science returned more results than Google Scholar, and so its results were used for
the other three works of Cassie and Baxter [2–4]. Further, Cassie, A. B. D. Discussions of
the Faraday Society 1948, 3, 11 is sometimes incorrectly cited as Cassie, A. B. D. Trans-
actions of the Faraday Society. 1948, 3, 11. Thirty-six references to the later were found
with a Web of Science search, even though no such volume or issue were published in
Transactions in that year. The thirty-six references were included in the total count of
references to Cassie and Baxter's works. Finally, of the original 100 references random-
ly selected, 7 could not be retrieved/were in a foreign language. Seven additional refer-
ences were chosen at random and used in the sample.
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[1–4]. A random sample of 100 of these papers [6–105] gives 53 that
present some form of the Cassie/Cassie–Baxter equations [53–105],
of which 40 use a form of the equation to interpret contact angle
data on rough surface [66–105] (instead of e.g. heterogeneous
smooth surfaces). Of these 40 references, the majority (~65%) use
Eq. (1) to interpret or explain their data [80–105]; this can be a
cause for alarm on three different fronts as explained below. Consider
Eq. (1):

cosθc ¼ f cosθ− 1−fð Þ ð1Þ

where θc is the predicted Cassie–Baxter contact angle, and f is thought
to be the fractional projected area of a material with smooth surface
contact angle, θ, and the (1− f) term is thought to reflect the contri-
bution of air remaining under the drop. The use of Eq. (1) potentially
introduces errors in (at least) three aspects of wetting: 1) the predic-
tion and/or interpretation of contact angle data on surfaces, 2) the
effect on contact angle predictions as liquids penetrate into rough
surfaces, and 3) the stability or transition criterion of the Cassie–
Baxter and Wenzel wetting modes on rough surfaces.

The concerns with Eq. (1) stem from the definition of f. Eq. (1)
defines f as the projected area of the solid–liquid interface per unit
projected area under the drop. This means that Eq. (1) is not, in
general, the Cassie–Baxter equation. The original proper Cassie–Baxter
equation, as formulated by Cassie and Baxter [1–4], is Eq. (2):

cosθc ¼ f 1 cosθ1−f 2 ð2Þ

Cassie and Baxter defined f1 as the total area of solid under the
drop per unit projected area under the drop, with θ1 as the contact
angle on a smooth surface of material 1. Likewise, f2 is defined in an
analogous way, with material 2 as air (θ2=180°). Cassie and Baxter
thought that θ1 could be either of the advancing or receding smooth
surface contact angles, giving advancing and receding predictions of
the Cassie–Baxter contact angle, respectively. Johnson and Dettre
[106] later rederived Cassie and Baxter's equation using thermody-
namic principles, showing that θc and θ1 must each be equilibrium
contact angles. However, the form of the equation derived [106]

remained the same as Eq. (2), with the same definitions for f1 and
f2. Marmur and Bittoun have more recently shown that the Cassie–
Baxter, (and Cassie, and Wenzel) equations are approximations
which become valid as the drop size becomes sufficiently large
compared to the wavelength of the roughness/heterogeneity of the
surface [107]. However, when this requirement is satisfied, they find
the same form for the equations. In this review we also focus on
cases where drop size is much larger than the wavelength of the
roughness/heterogeneity of the surface.

Fig. 1(i) shows how the values of f1 and f (and by extension, Eqs. 1
and 2) can be identical in the limiting case of coplanar interfaces.
Fig. 1(ii) and (iii) shows how f1 and f2 are different from the values
of f and 1-f in the general case. As the first problem then, Eq. (1)
will not generally return correct predictions of contact angles on
rough surfaces, while Eq. (2) will. To put the difference between
Eqs. (1) and (2) in another way, using Eq. (1) effectively ignores
any roughness at the solid–liquid and liquid–vapor interface, and is
thus only valid for surfaces such as those in Fig. 1(i). Fig. 1(i) is obvi-
ously not a general rough surface, and thus Eq. (1) is not a general
correct form of the Cassie–Baxter equation. However, many studies
[83–105] (~58% of the randomly selected references which study
rough surfaces), and four works by the present authors [108–111]
examine general rough surfaces such as those in Fig. 1(ii) and (iii),
and use Eq. (1) nevertheless.

The second problem with the use of Eq. (1) stems from its mathe-
matical inconsistency as liquid penetrates the troughs of a rough
surface (i.e. as f→1). As f→1, Eq. (1) returns the behavior of the
Young equation. In their largely forgotten passage, however, Cassie
and Baxter noted, “When [f2 is zero equation [2]] reduces to Wenzel's
equation for the apparent contact angle of a rough surface with
the roughness factor f1.”. The Wenzel roughness factor, identical
to f1 in Cassie and Baxter's work if the surface is fully penetrated, is
commonly given the symbol, r. The correct form of the Cassie–Baxter
equation (Eq. 2) therefore must, and does, capture both the Wenzel
equation:

cosθc f 1→r; f 2→0ð Þ ¼ cosθw ¼ r cosθ1 ð3Þ

Coplanar (i.e. in the same line) liquid-vapor
and solid-liquid interfaces 
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Fig. 1. Schematic close up of three rough 2-D surfaces. Solid is blue/gray, air is white, liquid is the cross-hatched area above the surface. Liquid–vapor and solid–liquid interfaces of
drop are denoted by the black line. (i) A smooth-topped rough surface, which (for zero penetration of liquid) has coplanar solid–liquid and liquid–vapor interface (i.e. interfaces are
in line with each other). This yields f1= f and f2=(1-f) for (i). (ii) An arbitrary rough surface showing the values of f1, f2 and f, with f1 ≠ f and f2 ≠ (1-f) in general. (iii) A dual-scale
rough surface showing (left) a curved liquid–vapor interface, (middle) contact of the drop with pillars of different heights, and (right) partial penetration into a dual scale structure,
all of which increase the effective area of the liquid–vapor interface under the drop. Neither f1 nor f2 are functions of f in all three case of (iii). Further, f1 and f2 can both be greater
than unity (depending on spacing, etc.).
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