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a b s t r a c t

Expected values for observed heterozygosity, genetic diversity, and inbreeding of individuals relative to
inbreeding of the population (FIS) are derived in the case of one locus displaying homoplasy with K
possible allelic states (KAM model) in a clonal diploid population. Heterozygosity (HO) and genetic
diversity (HS) are substantially affected by homoplasy as long as the number of alleles K 6 10, while FIS

remains weakly affected in any case. Simulations suggest that in big populations, or in case of maximum
homoplasy (K = 2), expected values can appear far from the observed ones because equilibrium takes too
many generations to be reached at homoplasic markers in clonally propagating populations. This raises
some concern on the use of SNPs, at least in clonal populations.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In diploid clones, model were derived in the infinite allele
framework (Balloux et al., 2003; De Meeûs and Balloux, 2004,
2005; De Meeûs et al., 2006). In that case, it is expected a total
absence of heterozygotes at equilibrium with the probability of
within individual identity QI = 1 and consequently strongly nega-
tive inbreeding of individuals relative to sub-population’s inbreed-
ing as measured by Wright’s FIS (Wright, 1965). This was
successfully used using microsatellite markers that are highly
polymorphic, in particular in Trypanosoma brucei gambiense (Koffi
et al., 2009; Simo et al., 2010). The effect of homoplasy was theo-
retically studied in sexually reproducing populations (e.g.
(Rousset, 1996) and for different mutation models regarding
microsatellites (reviewed in (Estoup et al., 2002)). These works
have demonstrated a weak effect on Wright’s FIS and a moderate
one on FST, considering that microsatellite loci rarely (if any) follow
a strict stepwise model of mutation. Recent development of new
sequencing techniques provides the availability of huge numbers
of markers with great homoplasy, e.g. the SNPs. This is the case
for many pathogenic microbes, in particular diploid parasites with
a clonal propagation (e.g. (Abbey et al., 2011; Goodhead et al.,
2013; Yeo et al., 2013; Rogers et al., 2014; Carnes et al., 2015)).
Because point mutations are rare and transversions twice less
likely than transitions, SNPs are classically considered as

bi-allelic markers (Vignal et al., 2002; Rosenberg et al., 2010;
Sere et al., 2014), and hence display maximum homoplasy. Other
approaches, like the coalescent, consider such kind of markers
through the infinite sites model that allows inferences to be made
through genealogical relationships of haplotypes. The model devel-
oped here concern the classical population genetics approach
through Wright’s FIS as can be found elsewhere (Wright, 1951;
Cockerham, 1969, 1973; Rousset, 1996; Balloux et al., 2003; De
Meeûs and Balloux, 2005; De Meeûs et al., 2007).

In this note, I derive equations for identity probabilities within
and between individuals in an isolated population for different val-
ues of K (maximum possible number of alleles). This allows com-
puting expected values for expected observed heterozygosity HO

and expected genetic diversity HS and FIS. I show that homoplasy
has almost no effect on expected FIS. I also show that homoplasy
has a significant impact on expected values for HO and HS as long
as K 6 10. Simulations however suggest that the situation worsens
in very big populations or for loci with maximum homoplasy
(K = 2) for which equilibrium values may take so much time that
no natural population is expected to display those. This raises
concerns about the use of SNPs in clonal populations.

2. Equations

I follow the same approach as in previous population genetics
papers (Rousset, 1996; Balloux et al., 2003; De Meeûs and
Balloux, 2005). Wright’s FIS can be defined as the inbreeding of
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individuals relative to the inbreeding of sub-populations. It is a
measure of deviation of the local genotypic distribution from the
panmictic expectations and can be defined according to
Cockerham (1969, 1973) as a function of individual inbreeding QI

(probability to randomly draw the same allele within an individ-
ual) and subpopulation inbreeding QS (probability to randomly
draw two identical alleles from two different individuals of the
same subpopulation):

F IS ¼
Q I � QS

1� QS
ð1Þ

I now assume a locus with K alleles mutating at rate u (with
change in state into one of the K � 1 other available alleles) in a
purely clonal isolated population of size N with non-overlapping
generations. At such a locus, probability of identity by state within
individuals QI(t) at generation t will evolve from one generation to
the next as:

Q Iðtþ1Þ ¼ ð1� uÞ2½Q IðtÞ� þ 2uð1� uÞ ð1� Q IðtÞÞ
1

K � 1

� �
þ u2 Q IðtÞ

1

ðK � 1Þ2
þ ð1� Q IðtÞÞ

K � 2

ðK � 1Þ2

" #
ð2Þ

Indeed, when no allele mutates, with probability (1 � u)2,
then these alleles are identical only if they already were iden-
tical at the previous generation with probability QI(t). Now, if
one allele mutates and not the other, with probability
u(1 � u)+(1 � u)u, only those that were different (with proba-
bility 1 � QI(t)) can become identical and the one that mutates
has then a probability 1/(K � 1) of becoming identical to the
one that does not mutate. Finally, if both mutate (with proba-
bility u2), and thus change of state, if already identical (with
probability QI(t)) they become identical again with probability
1/(K � 1)2 and, if they were different (with probability
1 � QI(t)), only K � 2 alleles can offer the possibility of identity,
with individual probability 1/(K � 1)2. We can now rearrange
Eq. (2) into:

Q Iðtþ1Þ ¼ Q IðtÞ ð1� uÞ2 � 2uð1� uÞ
K � 1

þ u2

ðK � 1Þ2
� u2 K � 2

ðK � 1Þ2

" #

þ 2uð1� uÞ
K � 1

þ u2 K � 2

ðK � 1Þ2
ð3Þ

At equilibrium QI(t+1) = QI(t) = cQ I , hence:

cQ I � cQ I ð1� uÞ2 � 2uð1� uÞ
K � 1

þ u2

ðK � 1Þ2
� u2 K � 2

ðK � 1Þ2

" #

þ 2uð1� uÞ
K � 1

þ u2 K � 2

ðK � 1Þ2
ð4Þ

()

cQ I ¼
ðK�1Þ2uð1�uÞþu2ðK�2Þ

ðK�1Þ2
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ð5Þ

K > 1 and u > 0, hence:

cQ I ¼
2ðK � 1Þð1� uÞ þ uðK � 2Þ

ðK � 1Þ2ð2� uÞ þ 2ðK � 1Þð1� uÞ � uþ uðK � 2Þ
ð6Þ

()

cQ I ¼
Kð2� uÞ � 2

KðK � 1Þð2� uÞ � 2u
ð7Þ

Knowing that for reasonable small K > 1 u� 1, we can
approximate:

cQ I �
2ðK � 1Þ

2KðK � 1Þ ¼
1
K

ð8Þ

which is the probability to randomly draw twice the same allele
among the K possible ones.

It can be noted that QI is the reversed of the probability of find-
ing a heterozygous individual (within individual probability to find
different alleles) also known as observed heterozygosity
HO = 1 � QI. Hence, it is easily seen that, with K = 2, HO = 0.5. This
means that half of SNPs sites will be expected to be found
heterozygous in a clonal population, while the other half will be
found as fixed homozygous individuals.

The evolution of identity by state between individuals QS(t) will
be:
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When both alleles mutate, with probability (1 � u)2, and when
both alleles come from the same ancestor, with probability 1/N,
these two alleles can be identical because they already were in
the common ancestor, with probability QI(t), or they were not iden-
tical (1 � QI(t)) but the same allele is sampled twice, with probabil-
ity ½, or the two alleles come from two different individuals of
generation t (with probability 1–1/N) and the probability that they
are identical is then QS(t). If one allele mutate and not the other,
with probability 2u(1 � u), and the two alleles come from the same
ancestor individual (1/N), the two alleles can become identical if
they were not identical in that ancestor (1 � QI(t)) and the mutant
becomes identical to the other allele that does not mutate, with
probability 1/(K � 1), or if the two alleles came from two different
ancestor individuals (with probability 1–1/N) the two alleles can
become identical if they were not identical at time t (1 � QS(t))
and the mutant becomes identical to the other (1/(K � 1)).
Finally, in case both alleles mutate, with probability (1 � u)2, and
if they come from the same ancestor individual (1/N), if the two
alleles were identical in that individual (QI(t)), they mutate into
the same state with probability 1/(K � 1)2, or if they were different
in that ancestor (1 � QI(t)) there are K � 2 possibilities that both
mutate into the same state with probability 1/(K � 1)2, or the
two alleles come from two different ancestor individuals (1–1/N)
in which they were identical (QS(t)) and both mutate into the same
state (1/(K � 1)2) or not identical (1 � QS(t)) and both mutate into
the K � 2 remaining state and become identical ((K � 2)/(K � 1)2).
Then Eq. (9) can be rearranged into:
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