

Article

Effect of V₂O₅/WO₃-TiO₂ catalyst preparation method on NO_x removal from diesel exhaust

Lei Pang^{a,b}, Chi Fan^a, Lina Shao^a, Junxia Yi^b, Xing Cai^b, Jian Wang^b, Ming Kang^b, Tao Li^{a,c,*}

^a School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

^b Technical Center of Dongfeng Commercial Vehicle Co., Ltd, Wuhan 430056, Hubei, China

^c Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

ARTICLE INFO

Article history: Received 20 June 2014 Accepted 2 September 2014 Published 20 December 2014

Keywords:

Selective catalytic reduction Nitrogen oxide Vanadium catalyst Hydrothermal stability Diesel engine

ABSTRACT

 V_2O_5/WO_3 -TiO₂ catalysts were prepared by conventional impregnation (VWTi-con) and ultrasound-assisted impregnation methods (VWTi-HUST). Their catalytic performance was tested for the selective catalytic reduction (SCR) of NO with NH₃. The effects of the preparation methods on the catalyst properties were studied. The catalysts were characterized by X-ray diffraction, scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. Both structural investigation and NH₃-SCR activity showed that the preparation method had a strong effect on the thermal behavior of the V₂O₅/WO₃-TiO₂ catalysts. After a hydrothermal treatment, a significant loss of NO reduction activity was observed for the VWTi-con catalyst, which suffered severe sintering and even formed a rutile V_xTi_{1-x}O₂ solid solution, while the VWTi-HUST catalyst had the same good hydrothermal stability as a commercial catalyst, indicating that the VWTi-HUST catalyst can be used in a commercial diesel after-treatment system. The ultrasound-assisted impregnation method produced a stronger interaction between the vanadium species and WTi support, which stabilized the vanadium species in the reduced state.

© 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Diesel vehicles have attracted a large market share for its benefits such as high power and good fuel economy [1]. However, the emission of nitrogen oxides (NO_x) by diesel vehicles is harmful to the environment and human health [2,3]. In order to eliminate NO_x pollution from diesel exhaust, ever-tightening emission regulations have been imposed in many countries.

One of the leading technologies for reducing NO_x emissions is the selective catalytic reduction by ammonia (NH₃-SCR), which has been extensively studied for lean NO_x control in stationary sources and diesel vehicle emission [4–6]. A catalyst with a high activity, broad operating temperature, and excellent hydrothermal stability is required for the NH₃-SCR technology [7–9]. The V₂O₅/WO₃-TiO₂ catalyst has been applied successfully for the exhaust treatment of heavy duty diesel engines for its high catalytic activity and selectivity, and superior resistance to sulfur poisoning [10,11]. Thus, the first choice for NH₃-SCR catalyst applied in the China stage IV standard is the developed V₂O₅/WO₃-TiO₂ catalyst.

TiO₂ in the form of the anatase phase is most widely used as the support of the V₂O₅/WO₃-TiO₂ catalyst due to its better electron transfer and superior resistance to sulfur poisoning [12,13]. Compared to other supports, anatase TiO₂ can remarkably improve the dispersion state of the VO_x species on the surface of catalysts [14]. The vanadium species on anatase

^{*} Corresponding author. Tel: +86-25-87557048; Fax: +86-25-87543632; E-mail: taoli@mail.hust.edu.cn

DOI: 10.1016/S1872-2067(14)60218-7| http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 35, No. 12, December 2014

TiO₂ include isolated VO_x species, aggregated VO_x species, and crystalline V₂O₅ [15]. The distribution of the VO_x species depends on the vanadium loading. Isolated and aggregated VO_x species are the main species at low loadings, while crystalline of V₂O₅ is formed as the loading increases [16]. WO₃ can stabilize the anatase phase of the TiO₂ support and increase the surface acidity of catalysts [17].

Although the V2O5/WO3-TiO2 catalyst has been widely used in stationary and mobile pollution sources, a major drawback is its thermal deactivation in the exhaust gas, which can reach over 650 °C under certain conditions [18,19]. The challenges for the automotive application of V₂O₅/WO₃-TiO₂ catalysts are high SCR activity and good thermal stability in the wide temperature range [20,21]. Composite supports have been used to improve the hydrothermal stability, such as TiO₂-SiO₂ [22,23], TiO_2 -Al₂O₃ [24], and TiO_2 -ZrO₂ [25]. Some researchers have improved the hydrothermal stability of vanadium catalysts by the formation of a rare earth metal vanadate, which can inhibit the formation of a rutile $V_x Ti_{1-x}O_2$ solid solution [26]. V₂O₅/WO₃-TiO₂ catalysts have been prepared by different grafting sequences of the vanadium and tungsten onto the TiO₂, where the surface chemical properties and activity of the catalysts were shown to be independent of the sequence of the grafting sequence up to a monolayer of the catalyst [27]. However, studies on the effect of the V2O5/WO3-TiO2 catalyst preparation method on the fresh and hydrothermally aged SCR activities have not been systematic. Here, we prepared V₂O₅/WO₃-TiO₂ catalysts by conventional impregnation and ultrasound-assisted impregnation methods, and tested their catalytic performance for the SCR of NO with NH₃. The aim of the study was to understand and elucidate the deNO_x activity and deactivation behavior of the catalysts prepared by the different preparation methods.

2. Experimental

2.1. Catalyst preparation

WO₃-TiO₂ powder (WTi) was used as the support for preparing V_2O_5/WO_3 -TiO₂ catalysts containing 10 wt% WO₃ and 3 wt% V2O5. The conventional impregnation method was as follows. WTi was impregnated with vanadium oxalate aqueous solutions followed by drying at 110 °C for 12 h and calcination at 500 °C for 5 h. After calcination, a measured amount of water was added to the as-prepared powder and mixed to form a well-mixed slurry. A cordierite support (cylinder, diameter 11 mm, length 22 mm, bulk 2.1 cm³, 400 cell/cm²) was coated by dipping it into the slurry. After each immersion, air was gently blown to eliminate excess slurry to achieve a homogeneous coating on the ceramic surface. Successive immersion of the cordierite in the slurry was performed to achieve the required loading of about 250 g/L. The monolithic catalyst was labeled as V_2O_5/WO_3 -TiO₂-convention, which was also shortened to VWTi-con.

The ultrasound-assisted impregnation method was as follows. The WTi powder was put into the vanadium oxalate aqueous solution and thoroughly stirred, and then an ultrasonic treatment was applied for 1 h under a vacuum condition. Then, the sample was dried in a rotary vacuum dryer and calcined at 500 °C for 5 h. A cordierite support was coated followed the same procedure as above. This monolithic catalyst was labeled as V_2O_5/WO_3 -TiO₂-HUST, which was shortened to VWTi-HUST.

In the experiment for comparing the different preparation methods, the vanadium oxalate aqueous solution was mixed with ammonium metavanadate (V_2O_5 3.0 wt%) with oxalic acid ($n(C_2H_2O_4\cdot 2H_2O):n(V_2O_5) = 3:1$). All chemicals used were chemical grade. An imported industrial catalyst was used as the reference sample, and it was labeled as V_2O_5/WO_3 -TiO₂-industrialization, which was shortened to VWTi-ind. To investigate the hydrothermal stability of the catalyst, the monolithic SCR catalyst was aged in a quartz tube reactor at 700 °C for 12 h with wet air containing 10% H₂O flowing at the rate of 1000 mL/min. The hydrothermally aged catalysts were labeled as A-VWTi-con, A-VWTi-HUST, and A-VWTi-ind.

2.2. Catalyst characterization

Powder X-ray diffraction (XRD) patterns were recorded on an X'Pert PRO X-ray diffractometer using Cu K_{α} irradiation. Scanning electron microscopy (SEM) images were obtained on a FEI Sirion 200 scanning electron microscope at 10.0 kV. X-ray photoelectron spectroscopy (XPS) analysis was carried out on an Axis Ultra DLD spectrometer with Al K_{α} irradiation. The binding of energies were calibrated using the C 1*s* peak at 284.7 eV as an internal standard. Raman spectra were acquired on LabRAM HR 800 equipped with a frequency-doubled Nd-YAG 532 nm laser.

2.3. NH₃-SCR activity

The activity of the monolithic SCR catalysts was measured in a fixed-bed stainless steel tubular reactor of 1.2 cm diameter and 80 cm length. The reactant gas composition was 1000 ppm NO, 1100 ppm NH₃, 5% O₂, and balance N₂. A 2.1 cm³ monolithic catalyst was used in each test. The total flow rate was 1000 mL/min, that is, a GHSV by volume of 30 000 h⁻¹ was obtained. The concentration of NO after the reaction was monitored by an exhaust analyzer (Foshan Analytical Instrument Co. Ltd., China, FGA-4100-5G). To avoid errors caused by the oxidation of NH₃, a NH₃ trap containing phosphoric acid solution was installed before the gas entered the exhaust analyzer.

3. Results and discussion

3.1. Characterization

The XRD pattens of the fresh and hydrothermally aged vanadium-based catalysts prepared by the different methods are shown in Fig. 1. On the fresh VWTi-con and VWTi-HUST catalysts, the peaks of anatase TiO₂ ($2\theta = 25.6^{\circ}$, 38.1° , and 48.2°) dominated the XRD pattern, and V₂O₅ and WO₃ diffraction peaks could not be detected, indicating that V₂O₅ and WO₃ were well dispersed as the amorphous oxide, or aggregated in Download English Version:

https://daneshyari.com/en/article/59099

Download Persian Version:

https://daneshyari.com/article/59099

Daneshyari.com