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This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd
Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek
Gold Medal awarded by ECIS.
I first summarize the basics of numerical SF-SCF: the Scheutjens–Fleer version of Self-Consistent-Field theory
for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are
taken from the (non-SCF) DiMarzio–Rubin lattice model for homopolymer adsorption, which enumerates
the conformational details exactly by a discrete propagator for the endpoint distribution but does not
account for polymer–solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by
adjusting the field such that it becomes self-consistent. The model can be generalized to more complex
systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants,
micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is
that only numerical data are obtained. Extensions to excluded-volume polymers are in progress.
Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This
equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to
the Poisson–Boltzmann equation without a Stern layer). By using the discrete propagator for segments next
to the surface as the boundary condition in the continuum model, the finite segment size can be introduced
into the continuum description, like the ion size in the Stern–Poisson–Boltzmann model. In most cases a
ground-state approximation is needed to find analytical solutions. In this way realistic analytical
approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids
plus non-adsorbing polymers.
In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase
behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic
pressure Π follows the Van 't Hoff law, the depletion thickness δ equals the radius of gyration. This restricts
the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able
to find simple analytical approximations for Π and δ which account for non-ideality and include established
results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called
protein limit (polymer larger than the ‘protein-like’ colloids), where the binodal polymer concentrations scale
in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size≈colloid size) we
could give a quantitative description of careful experimental data.
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1. Introduction

To my big surprise, I was awarded the 2009 Overbeek Gold Medal
by the European Colloid and Interface Society, which acknowledges
‘excellent careers in, and inspiring contributions to, the field of colloid
and interface science’. When reviewing an entire scientific career, it is
unavoidable to make a selection of the topics. I decided to concentrate
on four issues:

(i) the numerical Scheutjens–Fleer lattice theory which is an
extension of the DiMarzio–Rubin model and may be seen as a
(multicomponent and multisegment) generalization of the
Flory–Huggins theory towards inhomogeneous systems,

(ii) reconciling the lattice model with continuum models based
upon the Edwards equation by introducing the finite segment
size into the continuum model,

(iii) finding simple expressions for the crossover between the dilute
and semidilute limits of the depletion thickness and osmotic
pressure for excluded-volume chains, and

(iv) applying these expressions to the phase behavior of colloids
and non-adsorbing polymer.

I started my career as an experimentalist. By sheer coincidence I
met in 1975, during a sabbatical year at the National Bureau of
Standards (now NIST), the great polymer physicists DiMarzio and
Rubin (DR), who had just developed their lattice model [1–3]
accounting exactly for the conformational statistics of an ideal
polymer chain next to an impenetrable interface which attracts or
repels the polymer segments. Their model is discussed in Section 2. I
returned toWageningen pondering on the vague idea that it might be
possible to extend the DR model (in which the chains are ideal and
where the volume-filling constraint is not obeyed since there is no
solvent) to more realistic situations. Then I got a brilliant undergrad-
uate student, Jan Scheutjens. I asked him to look into the possibilities
to improve on the shortcomings of the model. That is how in the late
1970s two experimentalists entered the area of polymer adsorption
theory and developed what is now known as the Scheutjens–Fleer
(SF) theory.

At that time two types of theories for polymer solutions (i.e.,
polymer and solvent) next to an interface were available in the
literature. The first starts from the configurational statistics of a single
adsorbed chain consisting of trains, loops, and tails. Silberberg [4] and
Hoeve [5] derived approximate partition functions for one train, one
loop, and one tail. Combinatorial statistics provided the partition
function of an adsorbed ideal chain. In order to extend this to a chain

interacting with solvent in a Flory–Huggins-type manner, additional
approximations about the shape of the concentration profile were
needed. The last step is to obtain the partition function of a system of
many chains and solvent molecules and to maximize this to find the
equilibrium situation. The overall results of Silberberg and Hoeve are
rather close [6], although typical differences occur due to different
approximations, amongst which the neglect of tails. These were the
first reasonable (though still rather primitive) theories of polymer
adsorption.

The second type of theory available in the mid-1970s was density
functional theory for chains on a lattice, especially in the form
proposed by Roe [7] and Helfand [8]. In these models, all the
properties of the interfacial layers are expressed in the local
concentrations and concentration gradients. Individual conformations
are not considered, only their effect on the concentration profile is
taken into account. As a consequence, the information about chain
conformations is lost. In deriving the entropic part of the partition
function Roe made some assumptions which boil down to the neglect
of tails; also the inversion symmetry is violated. Helfand introduced
so-called anisotropy factors to improve on these points, but this
model is only applicable to infinitely long chains and contains an
inconsistency in the normalization conditions [9].

In our attempts to extend the DR model, we had to learn about
self-consistent-field (SCF) theory, where walks take place in a field
which is not fixed (as in the DR lattice model) but where these walks
influence the field. We also had to learn about the continuum
descriptions as proposed by Edwards [10] and De Gennes [11,12]. In
this continuum model the chain does not make discrete steps, as in
the lattice, but is described as a continuous space curve ‘diffusing’
through a field. For simple forms of the field (which is then not self-
consistent) the Edwards equation may be solved analytically but in
the mid-seventies no solutions were known for polymers not only
interacting with the surface but also with the solvent, taking into
account the volume-filling constraint. Only after we published our
first SF paper [13] Hong and Noolandi [14] came up with a real
(numerical) SCF continuum solution for polymer in a monomeric
solvent.

In the SF extension of the DR model, there is not one fixed field for
the (one) polymeric component (as in DR) but every segment type
(including the solvent) is assigned its own field, in which all the
interactions and the volume-filling constraint are included. Because
the interactions depend on the local concentrations, the fields are now
self-consistent, unlike in the DR model. The essential steps of SF-SCF
are discussed in Section 3.
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