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ARTICLE INFO ABSTRACT

Available online 6 January 2010 GENERIC is a nonequilibrium thermodynamic formalism in which the dynamic behavior of a system is

described by a single compact equation involving two types of brackets: a Poisson bracket and a dissipative

KeyWON{S_-' ) ) bracket. This formalism has proved to be a very powerful instrument to model the dynamic behavior of
NOnequllllbl'lUm thermodynamics complex bulk phases. In this paper we review the basic principles of the GENERIC formalism, and show how
Interfaces

it can be applied to multicomponent multiphase systems with interfaces displaying viscous stress
deformation behavior. The generalization of the GENERIC formalism to multiphase systems provides a
powerful tool to model nonlinear dynamic behavior of complex interfaces in for example emulsions or foam.
Adding several interfacial contributions to the standard two-bracket formulation we derive the conservation
laws for mass, momentum, and energy for the bulk phases of the system. We also derive the jump balance
equations for the surface mass density, surface momentum, and surface energy. In addition to these balance
equations we obtain constitutive equations for the extra stress tensor, energy flux vector, and mass flux
vectors in the bulk phase, and the surface extra stress tensor, the surface energy flux vector, and surface mass
flux vectors of the interface. The GENERIC formalism also allows us to derive constitutive equations for the
transport of mass, momentum, and energy from the bulk phase to the interface. The resulting set of
equations is compared to those derived using the rational thermodynamic and classical irreversible
thermodynamic formalisms, and is in good agreement with the balance equations derived using these
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formalisms.
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1. Introduction [8], the stability of emulsions [9,10], the wetting behavior of thin films

on solid surfaces [11], or the dynamics of biological systems [12].

In multicomponent multiphase systems surface rheology, surface
diffusion, surface heat conduction, and transfer of mass, momentum
and energy across the phase interfaces can have a significant effect on
the overall dynamics of a system [1-4]. For example, the dynamics of
vesicles and microcapsules in a flow field are highly affected by surface
rheology and mass transfer across the interface [5]. Surface rheology
and mass transfer (both in-plane and perpendicular to the interface)
also affect the amplitude of surface waves [6,7], the stability of foam
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The transport of mass, momentum, and energy along and across
interfaces can be modelled by incorporating excess surface variables,
such as a surface mass density, surface momentum density, surface
energy, and surface entropy in the continuum description of a system
[1-4]. This leads to a set of differential balance equations for these
excess variables, which serve as boundary conditions for the balance
equations for the bulk fields. Apart from the familiar constitutive
equations for the bulk stress tensor, bulk energy flux vector, and mass
flux vectors for the various species in the bulk phase, we need to close
the set of equations by specifying constitutive equations for the
surface fluxes: the surface stress tensor, the surface energy flux vector,
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and the surface mass flux vectors [1-4]. When specifying these
constitutive equations the entropy production in the system is gen-
erally used as a guide [13].

Such a nonequilibrium thermodynamic approach, based on either
classical irreversible thermodynamics (CIT) or rational thermody-
namics (RT), leads to linear constitutive equations, which are basically
the surface equivalents of the Newtonian fluid model, Fourier's law,
and Fick's law [1-4].These linear relations are valid only for small
departures from equilibrium. In many practical application, for
example the production or processing of emulsions, systems are far
from equilibrium, and linear relations such as the linear Boussinesq
model for the stress tensor [14] give rather poor predictions of the
stress deformation behavior of the interfaces. For a more adequate
description of the behavior of the interfaces far from equilibrium,
nonlinear models are needed. Nonequilibrium formalisms such as
classical irreversible thermodynamics or rational thermodynamics are
not well suited for the development of such models.

Recently the extended irreversible thermodynamic (EIT) formalism
[15,16] was extended to multicomponent multiphase systems with
viscoelastic interfaces [17]. In the EIT formalism the assumption of local
equilibrium (a key assumption in both CIT and RT) is relaxed, and the
entropy is allowed to depend on the local fluxes in the system: the
symmetric part of the extra stress tensor, the trace of this tensor, the
heat flux vector, and the mass flux vectors [15,16]. The EIT formalism
provides a convenient tool to construct co-rotational or upper-convected
Maxwell type models for the surface stress tensor. In reference [17] this
formalism was used to construct the surface equivalent of the Giesekus
model [18]. Although the latter is a nonlinear model it is still valid only
for relatively small departures from equilibrium.

A nonequilibrium thermodynamic formalism ideally suited for
developing nonlinear constitutive equations, that are also valid far
from equilibrium, is the GENERIC formalism (General Equation for the
Non-Equilibrium Reversible-Irreversible Coupling) [19-21]. The
GENERIC formalism describes the dynamics of a system in terms of
two types of brackets: Poisson brackets, describing the reversible part
of the dynamics, and dissipative brackets, representing the irrevers-
ible part of the dynamics [19-21]. Constraints are imposed on both
types of brackets which restrict their specific form (see Section 2).
One of the strengths of the GENERIC formalism is its modular char-
acter [19-21], which means that it is relatively easy to incorporate
nonlinear dependencies on structural variables in the description of a
system. These are scalar or tensorial variables describing the micro-
structure of the material. Structural variables can also be included in
the classical irreversible thermodynamic or rational thermodynamic
formalism, using the internal variables theory (IVT) [22], but in
general this inclusion leads to constitutive models which typically are
valid only for small deviations from linear material behavior [23,24].

The GENERIC formalism also allows us to construct constitutive
equations for the material behavior of the interface that couple this
behavior directly to the behavior of the adjoining bulk phases.
Consider for example a system in which a liquid crystalline interface
(stabilized by amphiphilic rod-like molecules) separates a liquid
crystalline bulk phase (also containing rod-like molecules), and an
isotropic bulk phase. We would expect that the orientation of the rod-
like molecules in the bulk phase close to the interface will affect the
orientation of the rod-like molecules in the interface. This coupling
should be incorporated in the constitutive equation for the surface
orientation tensor. With the CIT, RT or EIT formalisms it is not possible
to construct this coupling. Alternatively, we could use the extended
rational thermodynamic (ERT) formalism [25,26] to include this
effect. But this formalism requires the fluxes in the system to be
treated as conserved variables. As we will see in Section 4, the
GENERIC formalism introduces this coupling in a far more natural
way, without treating fluxes as conserved variables.

The GENERIC formulation has been applied mainly to isolated
single phase systems [19-21], where only bulk contributions to the

two-bracket formulation are needed to describe the dynamics of the
system. Recently, Ottinger et al. [27] introduced a GENERIC formalism
for multiphase systems, in the context of bubble growth by exsolution
of a dissolved component from an oversaturated solution. This
formalism includes interfacial contributions to the Poisson and
dissipative brackets, and is valid for systems with invicid interfaces
[27]. In their development Ottinger et al. [27] assume that mass does
not accumulate at the interface, and that the surface mass density is
negligible. Therefore they do not consider the effects of surface
rheology, surface diffusion, or surface heat conduction. For the system
they are considering this is a more than reasonable assumption. But
for many practical multiphase systems, stabilized by (mixtures) of
surface active components these effects may not be negligible. For
those systems a generalization of the approach of Ottinger et al. [27] is
needed that incorporates these effects. Such a generalization is an
important step towards the development of GENERIC formulations for
multiphase systems with complex interfaces displaying nonlinear
material behavior.

In this paper we review the general structure of the GENERIC
formulation, and then discuss its application to multicomponent
multiphase systems with interfaces displaying viscous surface
behavior. Apart from surface rheology we will also include surface
diffusion and surface heat conduction in the description. And for the
latter processes we will include cross-coupling effects: the Dufour
effect (energy fluxes driven by gradients in concentration), and the
Soret effect (mass fluxes driven by temperature gradients). Although
such effects are in general negligible in the bulk phase, these cross-
couplings tend to be very important for transfer processes across the
interface [4]. In Section 2 we will first present a review of the GENERIC
formalism for isolated single phase systems. In Section 3 we will
present the GENERIC formalism for multiphase systems with viscous
interfaces. In Section 4 we will compare the results from the GENERIC
formalism to those derived by more classical approaches based on
irreversible and rational thermodynamics [1-4]. We will also dis-
cuss how the formalism presented here can be extended to de-
velop constitutive equations that include dependencies on structural
variables.

2. GENERIC formalism for an isolated single phase system

Let us consider an isolated single phase system, consisting of N
components. In classical nonequilibrium thermodynamics [13] the
dynamic behavior of such a system is described by the equation of
continuity, the (N—1) species mass balances, the momentum
balance, the energy balance, and a set of constitutive equations for
the fluxes in the system (the stress tensor, the energy flux vector, and
the mass flux vectors). These constitutive equations must be chosen
such that the entropy inequality is satisfied [3,13]. In the GENERIC
formulation these (2N+3) equations are replaced by a single
compact equation of the form [19-21]

W= am+ns )

where the Poisson bracket {A, E} represents the reversible part of the
dynamics of the system; it is defined by [19-21]

BA(X)

A E}= L2 2
(A= 2 L 2 @)
In this expression E(x) is the Hamiltonian of the system, x is the vector
of independent system variables, and L is an antisymmetric matrix.
The derivatives in this expression are to be interpreted as functional
derivatives. The arbitrary observable A is defined as

A= [ adv 3)
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