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Advances in automated and high-throughput imaging technologies have
resulted in a deluge of high-resolution images and sensor data of plants.
However, extracting patterns and features from this large corpus of data
requires the use of machine learning (ML) tools to enable data assimilation
and feature identification for stress phenotyping. Four stages of the decision
cycle in plant stress phenotyping and plant breeding activities where different
ML approaches can be deployed are (i) identification, (ii) classification, (iii)
quantification, and (iv) prediction (ICQP). We provide here a comprehensive
overview and user-friendly taxonomy of ML tools to enable the plant community
to correctly and easily apply the appropriate ML tools and best-practice guide-
lines for various biotic and abiotic stress traits.

Plant Stress Phenotyping in Agriculture
To meet the future demand of food, feed, fiber, and fuel, crop production must be doubled by
2050i [19_TD$DIFF] Crop yields are limited inherently by plant stresses (biotic and abiotic), and plant breeders
have protected yield from plant stress losses by incorporating resistance genes and developing
more climatically-resilient cultivars. Plant breeders and researchers rely on plant phenotyping for
accurate and precise trait collection and use of genetic tools to achieve their research goals.
Plant phenotyping is defined as the application of methodologies and protocols to measure a
specific trait, ranging from the cellular level to the whole plant or canopy level, related to plant
structure and function [1]. Agriculture research programs phenotype large populations for
several traits throughout the crop growth cycle. This challenge to phenotype multiple traits
and large populations is exacerbated by the necessity of sampling multiple environments and
growing replicated trials. Until recently, traditional methods of phenotyping have not kept pace
with the available high-throughput genotyping tools. The bottleneck in phenotyping has driven
intense efforts by the scientific community of agriculture researchers and engineers to adapt
newer technologies in field phenotyping. A classic example is high-throughput phenotyping
(HTP), which has unlocked new prospects for non-destructive field-based phenotyping in plants
for a large number of traits including physiological, biotic (includes living factors such as fungi,
bacteria, virus, insects, parasites, and weeds, etc.) and abiotic (includes non-living factors such
as drought, flood, nutrient deficiency, and other environmental factors) stress traits [2,3]. Both
ground and aerial HTP platforms, equipped with multiple sensors are being used in agriculture to
measure multiple plant traits at varying growth stages rapidly, precisely, and accurately
(Figure 1A, Key Figure). Examples of these HTP platforms include deployment in cotton
(Gossypium hirsutum L.) [4], triticale (� Triticosecale Wittmack L.) [5] [20_TD$DIFF], and maize (Zea mays
L.) [6]. Recent advances in sensors for imaging plants [7,8], ranging from remote sensing
including spectroradiometry [9], [21_TD$DIFF]Light Detection and Ranging ( [22_TD$DIFF]LIDAR) [10], visible to far-infrared

Trends
High-throughput phenotyping (HTP)
has unlocked new prospects for non-
destructive field-based phenotyping.
Autonomous, semi-autonomous, or
manual platforms equipped with single
or multiple sensors collect spatial and
temporal data, resulting in massive
amounts of data for analysis and
storage.

The enormous volume, variety, and
velocity of HTP data generated by such
platforms make it a ‘big data’ problem.
Big data generated by these near real-
time platforms must be efficiently
archived and retrieved for analysis.
The analysis and interpretation of these
large datasets is quite challenging.

Sophisticated data collection, storage,
and processing are becoming ubiqui-
tous, and newer areas of application
are emerging constantly. One such rela-
tively new domain is plant stress
analytics.

ML algorithms are a very promising
approach for faster, more efficient,
and better data analytics. ML being
inherently multidisciplinary draws
inspiration and utilizes concepts from
probability theory, statistics, decision
theory, optimization, and visualization.

Most current applications of ML tools in
plant sciences have focused on using a
limited set of ML tools (SVM, ANN). A
good understanding of which, when,
andhowvariousML tools canbeapplied
will be very informative to the plant com-
munity to leverage these ML tools.
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Key Figure

Machine Learning (ML) Tools for High-Throughput Stress Phenotyping
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