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a b s t r a c t

Accurate prediction of intra-molecular interactions from amino acid sequence is an important pre-
requisite for obtaining high-quality protein models. Over the recent years, remarkable progress in this
area has been achieved through the application of novel co-variation algorithms, which eliminate tran-
sitive evolutionary connections between residues. In this work we present a new contact prediction
method for a-helical transmembrane proteins, MemConP, in which evolutionary couplings are combined
with a machine learning approach. MemConP achieves a substantially improved accuracy (precision:
56.0%, recall: 17.5%, MCC: 0.288) compared to the use of either machine learning or co-evolution methods
alone. The method also achieves 91.4% precision, 42.1% recall and a MCC of 0.490 in predicting helix–helix
interactions based on predicted contacts. The approach was trained and rigorously benchmarked by
cross-validation and independent testing on up-to-date non-redundant datasets of 90 and 30 experimen-
tal three dimensional structures, respectively. MemConP is a standalone tool that can be downloaded
together with the associated training data from http://webclu.bio.wzw.tum.de/MemConP.

� 2016 Elsevier Inc. All rights reserved.

1. Background

Protein sequence-structure gap (Rost and Sander, 1996),
already quite dramatic for globular proteins, is even more pro-
nounced for membrane proteins, with merely two thousand
atomic structures available (Kozma et al., 2013; Tusnady et al.,
2005a) for over one million amino acid sequences containing at
least one predicted transmembrane (TM) region (The UniProt,
2014). The bulk of this huge discrepancy stems from the challenge
to crystallize membrane proteins, as they are likely to lose their
original structure when removed from their natural lipid environ-
ment due to their strongly hydrophobic surfaces, flexibility, and
lack of stability (Carpenter et al., 2008). The low number of known
3D structures also limits our ability to increase the structural cov-
erage of membrane proteins by template-based structure predic-
tion methods. On the other hand, sequence-based methods to
predict the topology of TM proteins, while highly accurate and
useful, are unable to shed light on their spatial architecture.

Perhaps the only sequence-based approach able to provide
information about the spatial arrangement of polypeptide chains
and, in particular, useful constraints for 3D structure modeling,
involves predicting contacts between amino acid residues. Predic-
tion methods of the first generation exploited the idea of compen-
satory residue substitutions as an indication of a residue contact
and utilized statistical methods of varying degree of sophistication
to identify correlated mutations between pairs of positions in a
multiple alignment (reviewed in (Fuchs et al., 2007)). More recent
methods additionally applied machine learning algorithms to
extract information about potential contacts form multidimen-
sional data, such as evolutionary profiles, physico-chemical prop-
erties of amino acids, and other sequence specific features (Punta
and Rost, 2005). However, all these methods, without exception,
were designed to predict residue contacts in soluble proteins.

For a very long time sparseness of structural data precluded the
application of contact prediction techniques to TM proteins. Not
surprisingly, methods trained on globular proteins produce
extremely poor results when applied to membrane protein
sequences due to their very specific biophysical properties, most
notably the fact that their exterior is much more hydrophobic than
the interior due to the interaction with the lipid environment.
In 2009 we developed the first contact predictor (TMHcon)
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specifically geared towards a-helical membrane proteins, which
employed a neural network trained on sequence features and cor-
relation measures, which dramatically outperformed earlier meth-
ods used for globular proteins in terms of precision and recall
(Fuchs et al., 2009).

Since the release of TMHcon the number of experimentally
determined three-dimensional structures of TM proteins that can
be used for training prediction algorithms increased significantly,
from a mere 160 high resolution structures (non-redundant at
40% sequence identity) in 2009 to over 330 today. Concomitantly,
the recent availability of more sensitive database search methods,
such as HHblits (Remmert et al., 2012), allows to create better evo-
lutionary sequence profiles by detecting more homologous
sequences to be included in the multiple sequence alignment.
Finally, and most importantly, there has been a quantum leap in
our ability to detect compensatory mutations, which are indicative
of structural contacts. While earlier methods assessed residue
co-variation between each pair of positions in a multiple sequence
alignment individually using simple correlation measures, such as
mutual information, recent methods rely on global statistical mod-
els. These models attempt to infer causative correlations from the
entire alignment and are thus able to distinguish between direct
structural contacts and transitive connections between residues.
The two pioneer approaches based on these novel ideas are
mean-field direct coupling analysis (mfDCA), implemented as
EVFold (Marks et al., 2011), and the estimation of a sparse inverse
covariance matrix, as used in PSICOV (Jones et al., 2012). For both
methods an accelerated implementation called Freecontact (Kajan
et al., 2014) is available. Recently improved methods to predict
residue contacts in soluble proteins have been released, which
either employ enhanced algorithms (CCMpred, (Seemayer et al.,
2014)), or combine several co-evolution methods (PconsC2
(Skwark et al., 2014), MetaPSICOV (Jones et al., 2015)).

Here we introduce a novel computational method, MemConP
(Membrane Contact Prediction), which is specifically geared
towards predicting residue contacts and helix interactions in TM
proteins. The tool takes advantage of the recent surge in the num-
ber of 3D structures, more sensitive sequence analysis techniques,
and vastly improved approaches to residue co-variation. It employs
the random forest classification algorithm, which utilizes a large
number of decision trees, each trained on a randomly chosen sub-
set of training data and features. The resulting ensemble of classi-
fiers determines the outcome by a majority voting. The random
forest approach is used to combine several sequence-derived (evo-
lutionary profiles, amino acid properties) and structure-derived
(predicted TM topology) features with the mfDCA approach offered
by Freecontact. We also introduce a new highly non-redundant
dataset for training machine learning methods on TM proteins, as
well as a new independent test dataset, which can serve for perfor-
mance comparison with future methods. We compare the perfor-
mance of MemConP with several recent predictive techniques,
which employ residue co-evolution.

2. Methods

2.1. Definition of transmembrane segments, residue contacts, and helix
interactions

For comparison of our method with other techniques we used
the definition of TM regions obtained from the PDBTM database
(Kozma et al., 2013). PDBTM definitions were also utilized for
benchmarking of contact predictions. For benchmarking the qual-
ity of helix interaction predictions we rely both on PDBTM as well
as on TM topology predictions produced by PolyPhobius (Kall et al.,
2005).

To make our method comparable to the already existing and
future ones (including our own previous work (Fuchs et al.,
2009), we used the definition of residue contacts based on the
Euclidean distance between any two atoms of less than 5.5 Å. A
pair of helices was defined to be interacting if there was at least
one residue contact between them. Another common contact def-
inition is the distance between the Cb atoms of two residues of less
than 8 Å. Performance measures for this alternative definition are
reported in Supplementary materials.

2.2. Datasets

We used four datasets to train and benchmark the predictor:
OldTrain, OldTest, NewTrain and NewTest. The first two datasets,
OldTrain and OldTest, were used by all recent TM helix contact pre-
diction methods and thus served as comparison datasets. OldTrain
(introduced by (Fuchs et al., 2009)) originally consisted of 62
redundancy reduced X-ray structures of TM proteins extracted
from PDBTM, TOPDB (Tusnady et al., 2008), and OPM (Lomize
et al., 2006), with a resolution better than 3.5 Å and possessing at
least three TM segments. We omitted the entry 2a79 from this
dataset, as the corresponding topology data was deleted from
PDBTM. OldTestwas introduced by (Wang et al., 2011) and contains
21 TM proteins, of which none has a sequence identity above 40%
to any other protein in this dataset, nor to those in OldTrain.

To create the NewTrain and NewTest datasets, used to train and
test our final predictor, atomic coordinates and the annotation of
membrane-spanning regions were extracted from the PDBTM
database. PDBTM contains 3D structure information of experimen-
tally solved TM protein structures, including atomic coordinates
and the annotation of TM regions generated by TMDET (Tusnady
et al., 2005b). We used the ‘‘Redundant Alpha” dataset of June
2015 from PDBTM containing 7374 protein chains as the initial
dataset of transmembrane proteins. In order to produce a training
dataset which is not biased towards an overrepresented family of
proteins, and a test dataset which is totally independent from
the training data, the initial dataset had to be redundancy reduced.
Unfortunately, all existing approaches are aimed towards redun-
dancy reduction of globular proteins. These methods take into
account global or local sequence similarity using a substitution
matrix which is designed for globular proteins and not optimized
for highly hydrophobic TM segments. We therefore applied a very
rigorous procedure to reduce redundancy both within and
between our training and test datasets, incorporating structural
similarity and PFAM family/clan membership (Finn et al., 2014)
in addition to sequence similarity. Specifically, we calculated the
length-independent measure of structural similarity, the so called
TM-score, using the TMalign method (Zhang, 2005). The PFAM
family/clan membership was added as an additional criterion to
eliminate similarity between multi-domain proteins as well as to
address those cases where even structural similarity comparison
fails. Two proteins were declared similar if they (i) either shared
a sequence identity of more than 35%, (ii) or displayed a TM-
score below 0.5, which, according to the authors, implies that they
share the same fold, (iii) or belonged to the same PFAM family or
clan. To minimize the bias towards a specific type of TM proteins
we grouped all proteins in this initial dataset according to the
number of TM segments they possess. Subsequently protein chains
were drawn from each of these groups, one at a time, and added to
the NewTest dataset. At the same time, the sequences in the same
group, which were similar to the drawn protein, were removed
from the initial dataset. Upon achieving a certain pre-defined size
of the NewTest dataset, Ntest, the procedure was continued and the
drawn proteins added to the NewTrain dataset until the initial
dataset was depleted, automatically yielding a certain size of the
NewTrain dataset, Ntrain. By applying the described procedure we
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