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a b s t r a c t

Cryo Electron Microscopy is a powerful Structural Biology technique, allowing the elucidation of the
three-dimensional structure of biological macromolecules. In particular, the structural study of purified
macromolecules –often referred as Single Particle Analysis(SPA)– is normally performed through an iter-
ative process that needs a first estimation of the three-dimensional structure that is progressively refined
using experimental data. It is well-known the local optimisation nature of this refinement, so that the ini-
tial choice of this first structure may substantially change the final result. Computational algorithms aim-
ing to providing this first structure already exist. However, the question is far from settled and more
robust algorithms are still needed so that the refinement process can be performed with sufficient guar-
antees.

In this article we present a new algorithm that addresses the initial volume problem in SPA by setting it
in a Weighted Least Squares framework and calculating the weights through a statistical approach based
on the cumulative density function of different image similarity measures. We show that the new algo-
rithm is significantly more robust than other state-of-the-art algorithms currently in use in the field.

The algorithm is available as part of the software suite Xmipp (http://xmipp.cnb.csic.es) and Scipion
(http://scipion.cnb.csic.es) under the name ‘‘Significant’’.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Single Particle Analysis using the Electron Microscope is a pow-
erful experimental technique to elucidate the three-dimensional
structure of macromolecular complexes (Frank, 2006; Sorzano
et al., 2007). Thousands of two-dimensional projections of the
structure under study are collected with the Electron Microscope,
which are then used in most cases within iterative algorithms that
have as initial input a first estimation of the three-dimensional
structure. However, refinement algorithms are known to behave
as local optimizers (Sorzano et al., 2006; Henderson et al., 2012),
so that the dependence of the final result on the initial volume is
a major concern in the field. This situation is known as the ‘‘initial
volume problem’’. There exist several algorithms addressing the
task of reconstructing a 3D volume compatible either with the

2D experimental images or with their image class averages
(Penczek et al., 1996; Ogura and Sato, 2006; Singer et al., 2010;
Coifman et al., 2010; Elmlund et al., 2010; Sanz-García et al.,
2010; Singer and Shkolnisky, 2011; Elmlund and Elmlund, 2012;
Elmlund et al., 2013; Vargas et al., 2014). However, the problem
is far from settled due to several reasons: (1) It is an optimisation
problem in a high-dimensional space; (2) There are many local
minima and algorithms may get trapped into them. Except for
Elmlund et al. (2013), most algorithms aim at trying to avoid local
minima. Elmlund et al. (2013) takes a soft optimisation probabilis-
tic approach, in which an image can take multiple 3D orientations
with different weights calculated from some heuristically deter-
mined function within a subset of so-called feasible directions. This
idea is somehow similar to the one in Maximum Likelihood and
Bayesian reconstruction (Scheres et al., 2005, 2007; Scheres,
2012a), in which all projections can take all directions with differ-
ent weights (in this case, calculated from the assumed a priori dis-
tribution of noise (ML) and signal coefficients (Bayesian)). In turn,
Vargas et al. (2014) adopts a statistical approach with the goal of
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also avoiding the local minima by strongly reducing the search
space using image subsets, randomly assigning Euler angles and
checking which of the assignments was more successful. Unfortu-
nately, current practice shows that, despite the availability of all
these possibilities, more robust algorithms are still in need, since
there are occasions in which the existing programs fail to produce
a satisfactory result. Some recent approaches (like Optimod
(Lyumkis et al., 2013) or MyFirstMap) take the pragmatic approach
of generating many different volumes (preferably with different
algorithms) and rank the volumes according to their fit to the
experimental data.

The algorithm presented in this paper, which we will refer to as
Significant, follows previous approaches in the field in which an
image is allowed to have different projection directions with differ-
ent weights. However, instead of setting the problem as a closed
form optimisation of a given functional under a simplified set of
assumptions, which may be violated in practical works, it consid-
ers more realistic models at the expense of mathematical tractabil-
ity. We rely on the theory of Weighted Least Squares (WLS)
optimisation rather than, for instance, on Maximum Likelihood
(ML) optimisation. The rationale for this choice is that we are more
free to choose a different weight scheme in which we incorporate
more criteria evaluating the quality of the fitting between a given
particle and its candidate projection direction. The fact that the
functional is changed along iterations complicates its mathemati-
cal properties in the limit, so that the algorithm cannot be under-
stood as an iterative algorithm to solve a Weighted Least Squares
problem because the weights change from iteration to iteration.
In principle, no weighting scheme is better than another, and the
proof of its correctness can only be based on the results it
produces.

Following the rational just introduced, Significant has been
developed so that similarity measures are certainly addressed
within statistically significant intervals; additionally, we have
incorporated a number of new ‘‘desired properties’’ of a solution.
In this way, we introduce the notion of ‘‘images being important
for a projection’’ and of ‘‘projections being important for an image’’,
the explicit consideration of the spatial neighbourhood of projec-
tion directions and, finally, the combined use of several image sim-
ilarity measures (the correlation coefficient and the IMED (IMage
Euclidean Distance) (Wang et al., 2005), an image metric that takes
into account pixel neighbourhoods). In the Results section we com-
pare our new algorithm with a number of common methods in the
field.

2. Methods

Let us call Ii the ith image in a collection of N images (they can
be experimental images or class averages, from the point of view of
our algorithm the only difference is a larger execution time in the
case of experimental images, since there are many more experi-
mental images than class averages). In order to construct a first ref-
erence volume, we assign random angles to each one of the images
and make a first reconstruction, that we will refer to as V ð0Þ. This
first reconstruction normally looks as a smooth sphere whose
radius coincides with the particle radius. If a better prior exists
(the volume is approximately a cylinder, or even a previous 3D
reconstruction of a related molecule), we may use it instead.

Let us now refine the first reconstruction using the following
iterative method

V ðkþ1Þ ¼ arg min
V

XN

i¼1

XM

j¼1

wðkÞij keIðkÞij � PjVk2 ð1Þ

where Pj denotes the projection operator along the direction j
(assuming that we are exploring a discrete library of M projections),

and eIðkÞij is the image resulting of aligning, rotationally and transla-
tionally, the ith image to the jth projection of V ðkÞ. wðkÞij is a weight
(note that normally weights are between 0 and 1, and this is indeed
the case in our method, although this is not strictly necessary) that
controls whether the ith image should be considered to come from
the jth direction at iteration k. Note that many of the 3D reconstruc-
tion formalisms can be set in this generic framework: Projection
Matching (Scheres et al., 2008) has wðkÞij ¼ 1 for only one of the M
directions; in Maximum-Likelihood 3D (Scheres et al., 2007) all
weights can, in principle, be different from 0 and they are calculated
based on the a priori assumption of Gaussianly distributed noise;
similarly, Relion calculates weights based on the previous assump-
tion and the assumption that Fourier coefficients are Gaussianly
distributed (Scheres, 2012a). This type of algorithms is referred as
Weighted Least Squares (WLS).

In this article, we also adopt a probabilistic approach for the
weight calculation, although in this case based on the concept of
statistical significance. Let us consider the case of Projection
Matching. It compares, after alignment, the ith image to all M pro-
jections generated from the volume at iteration k. This comparison
is usually performed by calculating Pearson’s correlation coeffi-
cient between the two images, qðkÞij , and the algorithm selects the
direction with maximum correlation. However, since images are
noisy, the correlation coefficient itself is a random variable. If both
the experimental images and the reprojections were to follow a
normal distribution, the one-sided confidence interval associated
to their cross correlation could be easily computed through Fisher’s
transformation (Sheskin, 2004, Chap. 28)

q 2 tanh tanh�1 max
j
fqðkÞij g

� �
� z1�aðkÞffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 3
p

� �
;max

j
fqðkÞij g

� �
ð2Þ

where tanh is the hyperbolic tangent, a is the level of confidence,
z1�aðkÞ is the 1� aðkÞ percentile of the Gaussian distribution, and N
is the number of pixels on which the correlation has been calcu-
lated. The idea is that, because of the noise, all those directions
whose correlation coefficient lay in this confidence interval are sta-
tistically indistinguishable from the maximum (with a confidence
level aðkÞ), and consequently, they should all be kept as feasible
solutions. However, the assumption of normality does not hold in
practical cases (this issue will be further discussed along this work),
which makes inaccurate the simple computation of Fisher’s trans-
formation. At this point Significant departs from other algorithms
in the field in that it still uses Fisher’s confidence interval as a first
way to filter out direction candidates, but it subsequently explicitly
considers the distribution of experimental correlation coefficients
for the actual confidence assignment (note that this approach
allows the use of other similarity measures besides cross correla-
tion). This latter concept is what we will refer as ‘‘a direction being
significant to an image’’ (with a confidence level aðkÞ). For doing so,
we estimate the marginal probability density function of the qðkÞi�
variable (see Fig. 1), and we check whether qðkÞij is larger than the
1� aðkÞ percentile:

Pr qðkÞi� 6 qðkÞij

n o
P 1� aðkÞ ð3Þ

Note that in this condition aðkÞ plays a similar role to the Type I error
(a) in Statistical Inference, and from that analogy we have chosen
the name ‘‘Significant’’ for this method. Note that the role of this
condition is to allow the contribution of an image to a number of
‘‘Significant’’ directions at the same time, while working with the
experimental distribution of similarity measures, without being
restricted to normality assumptions or the use of cross correlations.

We may also add the desired condition that the image is signif-
icant to the direction by testing whether

Pr qðkÞ�j 6 qðkÞij

n o
P 1� aðkÞ ð4Þ
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