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a b s t r a c t

Algorithms for three-dimensional (3D) reconstruction of objects based on their projections are essential
in various biological and medical imaging modalities. In cryo-electron tomography (CET) a major chal-
lenge for reconstruction is the limited range of projection angles, which manifests itself as a ‘‘missing
wedge’’ of data in Fourier space making the reconstruction problem ill-posed. Here, we apply an iterative
reconstruction method that makes use of nonuniform fast Fourier transform (NUFFT) to the reconstruc-
tion of cryo-electron tomograms. According to several measures the reconstructions are superior to those
obtained using conventional methods, most notably weighted backprojection. Most importantly, we
show that it is possible to fill in partially the unsampled region in Fourier space with meaningful infor-
mation without making assumptions about the data or applying prior knowledge. As a consequence, par-
ticles of known structure can be localized with higher confidence in cryotomograms and subtomogram
averaging yields higher resolution densities.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In cryo-electron tomography (CET) a three-dimensional (3D)
image of the sample is reconstructed from transmission electron
microscope (TEM) images, which are approximately parallel 2D
projections of the object (Hawkes, 2006). Micrographs of the
sequentially tilted sample are obtained, typically a single axis tilt
series. From the projection data it is in principle possible to re-
trieve 3D information according to the projection-slice theorem
(Radon, 1917). In practice, the performance of the reconstruction
algorithm, which inverts the projection process, determines the
accuracy of the 3D reconstruction of the sample. In CET, major
challenges for the reconstruction process are the low signal-to-
noise ratio (SNR) of the micrographs and the limitation of the pro-
jection angle, typically from �60� to 60� due to the geometry of
sample and sample holder. The tilt restriction leaves a wedge-
shaped area in 3D Fourier space unsampled making the reconstruc-
tion task ill-posed (‘‘missing wedge problem’’) (Lucić et al., 2005).

The most common and best-known reconstruction algorithm in
CET is weighted backprojection (WBP), which has been introduced
several decades ago (Harauz and van Heel, 1986; Radermacher

et al., 1986; Ramachandran, 1971). In the 3D electron microscopy
(EM) field development of reconstruction techniques has mostly
focused on single particle analysis. Algebraic reconstruction meth-
ods such as the Algebraic Reconstruction Technique (ART) have
been introduced almost as early as WBP (Gordon et al., 1970).
Common iterative reconstruction methods in the 3D EM field are
ART with blobs (Marabini et al., 1998), simultaneous iterative
reconstruction technique (SIRT) (Gilbert, 1972; Penczek et al.,
1992) and Simultaneous Algebraic Reconstruction technique
(SART) (Wan et al., 2011).

Another major category of reconstruction algorithms is based on
Fourier transformation. The representatives are the fast Fourier
summation algorithm (Sandberg et al., 2003), the gridding method
(Penczek et al., 2004) and the nearest neighbor (NN) direct inversion
method (Grigorieff, 1998; Zhang et al., 2008). These Fourier based
methods have been shown to result in more accurate reconstruc-
tions than the algebraic methods (without imposing constraints)
in terms of Fourier Shell Correlation (FSC) (Penczek et al., 2004).

On the other hand, considerable advances have been made to
solve the inverse problem of reconstructing an object from projec-
tions, especially in the medical imaging field. There is a trend to-
wards iterative reconstruction algorithms. It is attractive to use
Fourier-based interpolation methods in such iterative schemes
due to their high accuracy and speed compared to real-space based
approaches. For instance, (Fessler and Sutton, 2003) introduced the
min–max interpolation for nonuniform fast Fourier transform and
later combined it into an iterative procedure for 2D tomographic
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reconstruction (Matej et al., 2004). Potts and co-workers (Knopp
et al., 2007) introduced a method, which we refer to as Iterative
Nonuniform fast Fourier transform (NUFFT) based Reconstruction
method (INFR) in the following. In this method the reconstruction
is formulated as an algebraic optimization problem, which is
solved using the conjugate gradient method and NUFFT. INFR has
been shown to result in excellent reconstructions when applied
to magnetic resonance imaging data, but it has not been applied
to cryo-EM data to our knowledge. In particular, it has not been
characterized to what extent the excellent interpolation character-
istics of INFR are beneficial to obtain meaningful information in
parts of the missing wedge.

Here, we apply INFR to the reconstruction of tomograms from
cryo-electron micrographs and compare the reconstruction quality
to the state-of-the art methods. Specially, we devised a computa-
tionally efficient implementation of INFR for single-axis CET in
our software. Simulations show that the reconstructions obtained
by INFR are more accurate than reconstructions using NN direct
inversion method and WBP for tilt series covering the complete
angular range. For restricted angular sampling, INFR is capable of
retrieving meaningful information in some regions of the missing
wedge in Fourier space, in particular in the low frequency regime.
When applied to experimental CET data, the improved reconstruc-
tion accuracy of INFR in the low frequencies has important conse-
quences: sensitivity and accuracy of particle localization by
template matching are increased considerably and subtomogram
averaging yields higher resolution results due to more accurate
subtomogram alignment.

2. Material and methods

2.1. Nonuniform fast Fourier transform (NUFFT)

For reconstruction of cryo-electron tomograms we imple-
mented INFR. In the following, we explain the method and our spe-
cific implementation.

First, we briefly discuss the NUFFT (Keiner et al., 2009), which is
the basis of the reconstruction algorithm described here. Given the

function f ðxÞ; x 2 IN and IN :¼ fx ¼ ðxtÞt¼0;::;d�1 2 Zd : � N
2 � xt <

N
2g

(the equispaced grid) as the input, NUFFT tries to evaluate the fol-
lowing trigonometric polynomial efficiently at the reciprocal

points kj 2 � 1
2 ;

1
2

� �d
; j ¼ 0; :::M � 1:

f̂ ðkjÞ :¼
X

x2IN
f ðxÞe�2pixkj : ð1Þ

In contrast to the regular discrete Fourier transforms, kj can be
on an arbitrary nonuniform grid. In matrix vector notation, Eq. (1)
can be rewritten as

f̂ ¼ Af ð2Þ

with the nonequispaced Fourier matrix A :¼ e�2pixkj ; x 2 IN;

j ¼ 0; ::;M � 1.
One approach for fast computation of Eq. (2) is based on the

factorization A � BFD (Potts et al., 2001), where D is the inverse
Fourier transform of a window function w, F is the oversampling
Fourier matrix and B is a sparse matrix of the window function w
with the cut-off parameter m, which contains at most ð2mþ 1Þd

non-zero entries per row (Fig.S1). The basic idea of this factorization,
which resembles the reverse gridding method (Penczek et al., 2004),
is the following: the accurate interpolation in Fourier space to a dif-
ferent grid is achieved by convolution with an appropriate window
function w, which is compensated for by prior multiplication with
the inverse of the real space transform of w. The accuracy of this
approach depends on the oversampling factor and the choice of
window function w and its cut-off parameter m. It has been

suggested that the Kaiser-Bessel window function provides high
accuracy and a typical choice of m would be 3 for an oversampling
factor 2 (Fessler and Sutton, 2003; Jackson et al., 1991).

The adjoint (or conjugate transpose) NUFFT is defined as the
sum

f 0ðxÞ :¼
XM�1

j¼0

f̂ ðkjÞe2pixkj ; x 2 IN ; ð3Þ

or in matrix vector notation

f 0 ¼ AHf̂ : ð4Þ

Its efficient computation can be analogously achieved by the
factorization AH � DT FT BT . It has been shown that the gridding
method can be seen as an efficient algorithm to compute AH (Potts
et al., 2001).

2.2. Reconstruction as an optimization problem

Without loss of generality, we consider the reconstruction of a
2D image from 1D projections for the sake of simplicity. According
to the projection-slice theorem the Fourier transform of a projec-
tion corresponds to a slice in the Fourier space of the object (Radon,
1917). Given M observations b as the Fourier transforms of projec-
tions, we define the matrix A as a nonuniform Fourier transform
matrix depending on the sampling geometry:

A :¼ e�2pixkj ; kj 2 �
1
2
;
1
2

� �2

; j 2 0; ::;M½ Þ: ð5Þ

The reconstruction problem is to recover f ðxÞ; x 2 f� N1
2 ; :::;

N1
2 � 1g � f� N2

2 ; ::;
N2
2 � 1g defined on a regular grid, such that:

Af ¼ b ð6Þ

Solving Eq. (6) can be formulated as an optimization problem:

f ¼ arg min kb� Afk: ð7Þ

This is a least square problem and when the sampling density
compensation (Pipe and Menon, 1999) is considered its solution
requires solving the following equation:

AHWAf ¼ AHWb: ð8Þ

Here W :¼ diagðwmÞ is the density compensation matrix, which
account for the nonuniform distribution of the sampling in Fourier
space (Fig.1b). For example, in CET the sampling is very dense to-
wards zero frequency and thus the projections contain to some de-
gree redundant information in these frequencies (Crowther et al.,
1970). It is important to weigh the information in Fourier space
according to the overall sampling pattern because low frequencies
would be artificially enhanced otherwise.

Eq. (8) can be solved using the conjugate gradient method on
the normal equations (Saad, 2003), in which the matrix vector
multiplications in this optimization algorithm are substituted by
the (adjoint) nonuniform Fourier transform operators. Throughout
the iterative optimization the residual decreases and agreement
of the reconstruction with the observations increases. Interest-
ingly, it can be shown (Knopp et al., 2007) that the result of the first
iteration of the conjugate gradient optimization starting from a
void volume is similar to the solution of the gridding method.
When optimization is continued, the iterative approach becomes
more accurate than the gridding method (Bronstein et al., 2002).

Excessive optimization nevertheless has the risk to overfit to
the noise if the observations are noisy. In order to be noise robust,
the procedure should be terminated when the residual is below the
noise level e:

kAHWb� AHWAfk < e: ð9Þ
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