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The behaviour of liquid layers on solid substrates depends on a number of factors, themost important of which is
the action of surface forces in the vicinity of the three phase contact line. The equilibrium interfacial (gas/liquid)
profile in the transition zone between the thin flat film and the spherical part of a meniscus is determined by the
combined action of the disjoining/conjoining and capillary pressures. The disjoining/conjoining pressure is
considered to include the electrostatic, van der Waals and structural components. The Poisson–Boltzmann
equation is also solved with various boundary conditions to calculate the electrostatic component of the
disjoining/conjoining pressure. Wetting conditions are considered and the interfacial profile is determined for
various parameters governing the surface interactions, as well as the ratio between the disjoining/conjoining
and capillary pressures.

© 2015 The Authors. Published by Elsevier Inc.
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

DCP1 is a manifestation of the surface forces acting on thin liquid
layers and this concept was introduced, and successfully investigated,
in the pioneering works of Derjaguin [1,2]. The well-known DLVO
(Derjaguin–Landau–Verwey–Overbeek) theory of colloidal stability is
based on DCP acting between colloidal particles/droplets [1]. DCP also
acts in the vicinity of the three-phase contact line in the case of
wetting/spreading [3], and for historical reasons, the action of DCP
under these conditions has received less attention. However, there are
notable examples where the effect of surface forces on wetting and
spreading phenomena of liquids on solid substrates are considered
(see [4–7] and references therein).

Flat wetting films on solid substrates exist because the DCP inside
the liquid film is balanced by CP2 in the neighbouringmeniscus or drop-
let. Within the spherical part of the meniscus or droplet, the separation
between the liquid–vapour and solid–liquid interfaces is high and the
DCP is negligible. Hence, the shape of the meniscus or droplet is deter-
mined by the action of CP only [3]. Therefore, a transition zone must

exist between the bulk meniscus or droplet and the flat film wherein
DCP and CP act simultaneously [3,5,7]. Sincemeasurements of equilibri-
um/hysteresis contact angles and surface curvature of bulk liquids are
carried out outside the transition zone, its size and profile are of interest.
The latter provide information on the DCP-isotherm for thin liquid films
on a solid substrate. The transition profile of the meniscus was calculat-
ed in [3] for the case of completewetting. The primary aim of this article
is to determine the shape of the transition zone for various types of the
DCP-isotherm. The exact numerical solutions for PW conditions and for
complicated forms of the DCP-isothermwere obtained for thefirst time.

2. Model Description

2.1. Model Assumptions

The transition zone II (Fig. 1) under equilibrium conditions is located
between a two dimensional capillary meniscus (I) and a flat wetting
film (II). A rectangular coordinate system, (x1, x2) is used, in which x1
and x2 are the lateral and normal coordinates, respectively. The width
of the capillary, 2H, is assumed to be much larger than the thickness of
the equilibrium flat film, he. In the case of CW3 (see Fig. 1,a), the
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1 DCP — disjoining/conjoining pressure.
2 CP— capillary pressure. 3 CW— complete wetting.
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continuation of the spherical meniscus (broken line) of radius re does
not intersect either the solid walls of the capillary or the thin liquid
film of thickness he. The case of PW4 is shown in Fig. 1,b; the continua-
tion of the spherical meniscus intersects the boundary at the contact
angle θe.

Under equilibrium conditions, there is no flow, and zero ion fluxes.
The surface tension is assumed to be constant, which is valid in the ab-
sence of surfactants (and thermal gradients) [8].

2.2. Expression for the DCP Isotherm

The full DCP is a sum of electrostatic, van der Waals and structural
components:

Π ¼ ΠE þΠW þΠS: ð1Þ

The van der Waals component [1] is given by

Πw ¼ A
6πh3

: ð2Þ

Here A = −AH, AH is the Hamaker constant; and h is a thickness of
the liquid film. The influence of the structural component, ΠS, is
discussed later (see Effect of the structural component section). An ex-
ample of the graphic dependences of the DCP components will be
given in Fig. 5,a.

To derive an expression for the electrostatic component, ΠE,
the Poisson–Boltzmann equation in the small-slope approximation,
h′2 ≪ 1, where the prime denotes differentiation with respect to
x1, is used:

∂2φ
∂x22

¼ F2c0
RTεε0

exp φð Þ− exp −φð Þð Þ ð3Þ

where φ=ΦF/(RT) is a dimensionless potential in which the dimen-
sional potential, Φ, is scaled on F/RT, wherein F is the Faraday con-
stant, R is the gas constant, and T denotes the temperature,
respectively; c0 is the molar electrolyte concentration; ε and ε0 are
the dielectric constants of water and vacuum, respectively.

In the case of equilibrium, the momentum equations in the xi direc-
tions (i=1,2) are expressed by the equations of electrohydrodynamics
[9,10]:

− ∂p
∂xi

−q
RT
F

∂φ
∂xi

¼ 0 ð4Þ

where q= Fc0(exp(−φ)−exp(φ)) is a volume charge density; and p is
the pressure in the liquid.

Eqs. (3) and (4) are used in the normal stress balance at gas–liquid
interface in the transition zone [3]:

−p−1
2
εε0E

2 þ εε0E
2
2 ¼ d

dx1

γ h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p ; x2 ¼ h

where Ei ¼ − RT
F

∂φ
∂xi

is the electric field; γ is the surface tension of
solution.

Taking into account in the last equation that ∂
∂x1 bb

∂
∂x2, the following

expression for the electrostatic component in the case of the small-
slope profiles is obtained:

ΠE ¼ RTc0 exp φð Þ þ exp −φð Þð Þ−2RTc0−
RTð Þ2εε0
2F2

∂φ
∂x2

� �2

: ð5Þ

The following boundary conditions are used here: Π(h → ∞) = 0
and φ(h → ∞) = 0, which correspond to the decay conditions for the
DCP and the electric potential at long distances. The detailed description
of the derivation of Eq. (5) and an analysis of the results for CW condi-
tions are given in [11].

Eq. (5) coincides with Derjaguin's expression [1] for flat films. How-
ever, there is a substantial distinction of the expression (5) from that de-
duced in [1]: Eq. (5) is valid for non-flat thin liquid films in the case of
small-slope approximation.

Two types of boundary conditions for Eq. (3) are used below to find
the distribution of φ(x2) and ∂φ/∂x2 across the liquid film:

(1) constant surface electrical potentials on both liquid–solid and liq-
uid–vapour interfaces: φs, φh = const;

(2) constant surface charge densities σs, σh = const.

The situationswhenφs≠φh or σs≠σh are rather common andwill
be studied below.

The equilibrium interfacial profile under the action of the surface
forces is described by the augmented Young–Laplace equation [1,3]:

γh″

1þ h02
� �3=2 þΠ hð Þ ¼ Pe: ð6Þ

Here Pe is the excess pressure equal to the capillary pressure for the
spherical meniscus, Pe = γ/(H − h*).

Eq. (6) representing the normal stress balance, is solved for the case
γ = const. The calculation results are discussed in the Equilibrium
interfacial profile in the transition zone section. For the systems with
the surface tension gradients, the significant tangential stress along4 PW— partial wetting.

Fig. 1. Schematic presentation of a capillarymeniscus under CW(a) and PW(b) conditions. I— spherical capillarymeniscus; II— transition zone; III— flatwetting films. a) θe=0, re bH, h⁎

= H − re N 0; b) θe N 0, re N H, h⁎ = H − re b 0.
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