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a b s t r a c t

Cryo-electron microscopy is an increasingly popular tool for studying the structure and dynamics of bio-
logical macromolecules at high resolution. A crucial step in automating single-particle reconstruction of a
biological sample is the selection of particle images from a micrograph. We present a novel algorithm for
selecting particle images in low-contrast conditions; it proves more effective than the human eye on
close-to-focus micrographs, yielding improved or comparable resolution in reconstructions of two mac-
romolecular complexes.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The term single-particle reconstruction refers to the reconstruc-
tion of a macromolecule from multiple projections, each present-
ing a single, freestanding copy of the macromolecule. These
projections are obtained by cryo-electron microscopy (cryo-EM).
The plunge-freeze procedure traps the molecules in a thin layer
of vitreous ice. A low-dose electron beam captures a low-contrast,
two-dimensional projection image (referred to as a micrograph)
containing a collection of the molecules trapped in random orien-
tations. The images of the molecules are then subjected to a com-
putational workflow commonly referred to as single-particle
analysis, which results in a 3D density map of the macromolecule.

A single high-resolution reconstruction of a 3D macromolecular
complex requires the collection of thousands of micrographs,
which typically yield hundreds of thousands of particle images.

In cases where contrast is extremely low (e.g. with low electron
exposures and low defocus settings), a researcher currently spends
a substantial amount of time picking particle images from the
micrographs. From an image-processing standpoint, the particle-
picking problem can be broken down into two steps. First, candi-
date particle images must be selected from the micrograph; this
step historically has been referred to as particle selection. Second,
the ‘‘true’’ particles (i.e. those representing biological molecules)
must be identified among those candidates that may contain fal-
sely discovered non-particles such as contaminants or noise; this
step is commonly referred to as particle verification. This effort is
often compounded by specimen heterogeneity, i.e. multiple con-
formational states coexisting within the same sample. This prob-
lem makes it necessary to collect a larger dataset to ensure there
is sufficient relevant data left, after classification, to build a high-
resolution map of the structure of interest. Hence, particle picking,
especially the second step of particle verification, represents a sig-
nificant barrier to a completely automated, reproducible single-
particle analysis workflow.

Considerable effort has been made to develop algorithms that
aid the human eye in selecting good particle images in these extre-
mely low-contrast micrographs (Glaeser, 2004; Langlois et al.,
2011; Zhu et al., 2004). A strategy often used is to employ a
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cross-correlation search over the micrograph in identifying data
windows containing candidate particles and then manually verify
each window (Rath and Frank, 2004; Roseman, 2003). Another ap-
proach to limit the false discovery rate (Langlois and Frank, 2011) is
to use hand-tuned thresholds, which can be applied on a micro-
graph-by-micrograph basis (Chen and Grigorieff, 2007; Tang
et al., 2007) or over the entire set (Voss et al., 2009). The elements
of subjectivity can be reduced using a machine-learning algorithm
referred to as a classifier, a supervised learning tool which requires
the user to define an initial selection comprising several hundred
examples of ‘‘good’’ and ‘‘bad’’ windows (Arbeláez et al., 2011;
Langlois et al., 2011; Zhao et al., 2013). Alternatively, candidate par-
ticle images identified can be aligned in 2D and then clustered into
classes based on intrinsic information; this enables the user to look
at the average of each class and either verify or reject the entire
class, or further inspect individual particles within that class
(Arbeláez et al., 2011; Shaikh et al., 2008). Nevertheless, current
methods still require significant effort by the user to verify particles.

We envision a new type of tool that uses unsupervised learning
to select particles from the micrograph with minimal user inter-
vention. The user is only required to provide the approximate size
of the macromolecule. Unsupervised learning leverages the obser-
vation that images of physical objects have limited complexity, and
thus, can be described by a compact representation. We seek to
further reduce this compact representation by exploiting the fact
that the views of the macromolecules are linked by rigid-body
transformations: azimuthal rotation and translation.

In the present study, we introduce a two-step automated
particle-picking procedure. The first step is a modified template-
matching procedure, termed AutoPicker, which identifies a set of
candidate particle images from a collection of micrographs and re-
jects high-contrast contamination and noise using an unsupervised
learning procedure. The second step employs an unsupervised one-
class classifier, termed View Classifier or ViCer, which exploits the
similarity among aligned true particles to reject outliers. To assess
the quality of the final particle selection, we have applied the
algorithm to identify and verify particles from two independent
datasets recorded under low-contrast conditions: one of
micrographs containing 70S ribosomes from Escherichia coli and
the second containing molecules of the V/A-ATPase from Thermus
thermophilus. The density maps obtained using the automatically
selected particle images were compared to maps derived from
manually selected particle images, which led to high-quality struc-
tures. We demonstrate that the particle images selected from of
the AutoPicker/ViCer workflow lead to density maps with
comparable, if not better, resolved features, and find that this
outcome is in part a consequence of AutoPicker/ViCer’s ability to
identify additional true particles in close-to-focus micrographs.

2. Methods

2.1. Proposed particle-picking algorithm

The proposed automated particle-picking algorithm naturally
reduces to two steps: (1) identification as well as an initial
verification of potential particles with AutoPicker and (2) further
verification using outlier rejection with ViCer.

2.1.1. AutoPicker
The AutoPicker algorithm, as outlined in Supplemental Fig. 1a,

uses template matching to identify windows that contain candi-
date particle images in a micrograph and classification by unsuper-
vised learning to reject both high contrast contaminants and noise
windows. Template matching alone provides an excellent ranking
of low-contrast, noisy particle (SNR �0.06) windows over noise,

yet provides no means for selecting the optimal threshold to dis-
tinguish these two groups. In addition, a micrograph may contain
high-contrast contaminants such as ice crystals and bubbles in
the ice after radiation damage of the specimen; depending on their
size, windows containing contaminants are ranked, according to
the cross-correlation score between each window and a template,
higher than, or at the same level as, those containing particles. The
unsupervised learning algorithm introduced by AutoPicker handles
both of these limitations.

First, AutoPicker employs principal component analysis (PCA)
over the power spectra of the extracted image windows, reducing
each image to a single principal component. Then, assuming a
Gaussian distribution, it rejects windows that fall in the tail, i.e.
more than 4 standard deviations from the mean. While this cutoff
might seem extreme, in practice only the noise windows follow a
Gaussian distribution, whereas contaminants tend to follow a
more skewed distribution on the tail. This cutoff targets only a spe-
cific type contaminant that proves deleterious to the next step.
AutoPicker then repeats this procedure over the background sur-
rounding the particle as defined by a ring around the particle;
the size of the ring is defined as the particle radius multiplied by
the exclusion multiplier and the width is the exclusion distance.
Large contaminants and aggregation violate this ring of exclusion,
and consequently, become outliers. This step eliminates the most
obvious high-contrast contaminants.

Second, AutoPicker applies Otsu’s algorithm (Otsu, 1979) on the
cross-correlation scores of the remaining windows with the
template in order to determine the optimal threshold that
separates candidate particles from noise. Note that the order of
these two steps is important because high-contrast contaminants
tend to skew the cross-correlation histogram, causing Otsu’s
method to find a suboptimal threshold. In this work, the template
was chosen as a disk with a radius corresponding to the particle
size and its edges softened by application of a kernel with a
Gaussian falloff.

2.1.2. ViCer 2.0
For relatively clean micrographs lacking ice crystals and other

artifacts, the AutoPicker algorithm is sufficient to ensure good par-
ticle selection. However, many contingencies can contrive to pro-
duce less than ideal micrographs and in such cases additional
contaminant removal proves necessary. The View Classifier (ViCer)
can then be used to further clean the candidate particles of
contaminants.

The original ViCer outlier rejection algorithm (Langlois et al.,
2012), as outlined in Supplemental Fig. 1b, works by maximizing
the similarity between true particles and, as a byproduct, is able
to recognize contaminants as outliers. ViCer requires that the
particle images have been aligned and grouped into views; it then
uses the translation-invariant bispectral transforms of the particle
images to further increase the similarity among true particles.
Next, PCA is used to represent the bispectral transforms in a
two-dimensional feature space. Visual inspection of this space
revealed that the true projections tend to form a single cluster,
surrounded by outlier contaminants.

The new ViCer algorithm includes two substantial improve-
ments over the original algorithm. First, the PCA is replaced with
an outlier-robust version of PCA called DHR-PCA (Feng et al.,
2012). This robust PCA prevents corruption of the covariance
matrix by contaminants, and as a consequence, yields principal
components that better separate contaminants from true particles.
Second, the Mahalanobis distance score (a multivariate z-score)
replaces the ad hoc multivariate extension of the median absolute
deviation (MAD) score (Hoaglin et al., 1983) to define the decision
boundary between true particles and outlier contaminants. The
Mahalanobis distance is defined as follows:
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