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Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular archi-
tecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images
(tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of
factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need
for new and improved computational methods to facilitate this challenging task. In this work, we present
a new method for membrane segmentation that is based on anisotropic propagation of the local
structural information using the tensor voting algorithm. The local structure at each voxel is then refined
according to the information received from other voxels. Because voxels belonging to the same
membrane have coherent structural information, the underlying global structure is strengthened. In this
way, local information is easily integrated at a global scale to yield segmented structures. This method
performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under
cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method
is demonstrated by applications to tomograms of different biological samples and by quantitative
comparison with standard template matching procedure.
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1. Introduction

Electron tomography (ET) enables three-dimensional (3D) visu-
alization and analysis of the subcellular architecture and macro-
molecular organization of cells and tissues in situ at a resolution
of a few nanometers (Lucic et al., 2013). This technique involves
the acquisition of electron microscopy projection images of a spec-
imen at different orientations. These images are then combined by
means of tomographic reconstruction methods to yield the 3D vol-
ume (Fernandez, 2012).

Segmentation of the 3D volume into its constitutive structural
elements is key for their interpretation. However, it proves to be
challenging because of a number of factors such as the crowded
cellular environment, the distortion caused by the missing wedge
and noise, which is particularly high in ET of fully hydrated and vit-
rified samples (cryo-ET) (Volkmann, 2010; Fernandez, 2012). Thus,
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segmentation constitutes a major bottleneck in ET, especially in
those studies intended to visualize the subcellular architecture un-
der cryo-conditions. Although several computational segmentation
methods have been presented, none has shown general applicabil-
ity yet. As a consequence, manual segmentation is still a method of
choice.

Software packages often used in ET have been gradually includ-
ing segmentation procedures based on the most known computa-
tional techniques (Watershed transform and thresholding
(Volkmann, 2002; Cyrklaff et al., 2005)). This makes segmentation
a semi-automatic process, thus facilitating its use. In the last sev-
eral years, there have been significant advances towards computa-
tional detection of specific structural features within tomograms,
like membranous structures, filaments and microtubules (Lebbink
et al., 2007; Sandberg and Brega, 2007; Moussavi et al., 2010;
Nurgaliev et al., 2010; Rigort et al., 2012; Weber et al., 2012). Many
of these methods rely on some sort of template matching. That is,
they search for a template that is suited to the targeted feature,
typically by means of cross-correlation techniques. In contrast to
these methods, we have recently developed a differential geome-
try-based segmentation that is particularly suited for membranes
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(Martinez-Sanchez et al., 2011, 2013). We first proposed a method
that uses a local membrane detector based on the Hessian tensor
(Martinez-Sanchez et al., 2011). Later, we improved this detector
and extended the abilities of the framework to characterize and
classify the detected membranous structures (Martinez-Sanchez
et al., 2013). Nevertheless, this local membrane detector still pre-
sented several limitations. Namely, gaps that may appear on mem-
branes due to experimental imaging conditions were not properly
filled. Also, membrane-attached structures were not discarded and
were instead segmented as part of the membranes. A non-trivial
postprocessing stage was required in these cases to actually extract
the membrane voxels. Finally, the detector used was suitable for
membranes with ridge-like (i.e. local maximum) profile, and was
therefore unable to identify edge-like structures (e.g. membrane
of vesicles having dense interior).

In this work, we propose a more robust local membrane detec-
tor. The method is based on broadcasting differential information
through the 3D space using the tensor voting algorithm (Tong
et al.,, 2004). In this way, nearby voxels that belong to the same
membranous structure enhance each other’s structural informa-
tion. As a result, the new local detector can fill the gaps present
on membranes, disregards structures apposed to the membranes,
and it is more robust against low signal-to-noise ratio, thus simpli-
fying the postprocessing stage. In this work we also show that
membranes having ridge-like and edge-like profiles can be de-
tected using the same procedure but different tensor that provides
the differential information.

2. Background on local membrane detection
2.1. Hessian tensor-based detection

It is assumed that, at a local scale, a membrane can be modeled
as a plane-like structure with membrane density profile (in the
direction perpendicular to the membrane) following a Gaussian
function. That is, the membrane profile is ridge-like, its density de-
creases as a function of the distance from the center of the
membrane.

Membrane detection starts with the application of a scale-space
operation on a grayscale volume, typically implemented as Gauss-
ian low-pass filtering. This step is used to isolate the information at
a given scale g, thus filtering out noise and all features smaller than
the scale. An additional benefit of this step is that scale-space can
smooth membranes making their profile closer to Gaussian. Typi-
cally, o is set to the thickness (expressed in voxels) of the targeted
membrane (Martinez-Sanchez et al., 2011).

Previously, our local detector for ridge-like membranes was
based on the Hessian tensor (Martinez-Sanchez et al., 2011). This
tensor provides information about the second order density varia-
tion, as it is defined as:
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where L denotes the volume after the scale-space operation and
% Vi, j € (x,y,z) are its second order partial derivatives. As a result
of the eigen-analysis of the Hessian tensor, three orthogonal eigen-
vectors #; and their corresponding eigenvalues /; (representing sec-
ond order derivatives along 7;) are obtained, which characterize the
local structure around any voxel of the volume. If we assume
|21] > |42] > |43], then the first eigenvector 77, i.e. the one whose
eigenvalue exhibits the largest absolute value, points to the
direction of the maximum curvature. If the local structure is a plane,
77 points to the direction perpendicular to the plane and the

following relationship holds |41] > || & |43]. This led us earlier to
propose a local detector (so-called membrane strength, M) defined
as follows (Martinez-Sanchez et al., 2011):
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where |VL| denotes the gradient of the volume L resulting from the
scale-space operation.

We used two additional steps to detect peaks of M correspond-
ing to membranes. A threshold t,; over M was imposed to select
membrane-like voxels. This was then coupled with the non-maxi-
mum suppression (NMS) criterion which selects only the ridge
points (i.e. the local maxima in the direction perpendicular to the
membrane). The use of NMS results in detected membranes being
represented as one-voxel thick surfaces in the 3D space. In sum-
mary, the local detector for ridge-like membranes is given by the
following equation (Martinez-Sanchez et al., 2013), where the first
condition represents NMS, ¢ is a small number and x € R? denotes
a voxel of the volume:

{ (L(x) > L(x — 694)) and (L(X) > L(X + 621))
M(X) > ty

(3)

2.2. Structure tensor to detect edge-like membranes

The detector defined in the previous section can detect ridge-
like membranes, but it is not suitable for the detection of mem-
branes with edge-like profile where density on one side of the
membrane is similar to that of the membrane (e.g. those presented
by a densely filled vesicle). Consequently, a new detector for this
type of membranes is required. To this end, we focus our attention
to the Structure tensor (Weickert, 1998), also known as the second
moment tensor, which is given by:
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where £ Vi (x,y,z) are the first order derivatives of the scale-
spaced volume L. The eigen-analysis of this tensor proceeds as in
the previous case (Fernandez and Li, 2003, 2005). The first eigenvec-
tor 77, i.e. the one whose eigenvalue exhibits the largest value,
points to the direction of the maximum variation. Also, a local plane
satisfies |41] > |42| ~ |43]. However, the Hessian and Structure ten-
sors differ regarding the exact position of the detected surface.
For a ridge profile L, the local maximum of the largest eigenvalue
(J41]) of the Hessian tensor corresponds to the maximum of L
(Fig. 1(Left)). For an edge profile L, the local maximum of the largest
eigenvalue (]441]) of the Structure tensor corresponds to the
inflection point of L (Fig. 1(Right)). Consequently, the Structure
tensor is well suited to detect edge-like local structures. Moreover,
the output of this edge detector is equivalent to the output of the
Hessian-based detector (red curves in Fig. 1). This means that the
eigen-analysis of the Structure tensor allows detection of edges and
their conversion into ridges. This, in turn, enables application of all
our ridge-based methodology to detect membranes with edge pro-
file. Therefore, the ridge-like profiles detected by the Hessian-based
detector and the edge-like profiles detected by the Structure
tensor-based detector can be further processed in the same way.

In this work, first and second order derivatives required for the
components of the tensors have been implemented based on
central differences (Frangakis and Hegerl, 2001).
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