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a b s t r a c t

In electron tomography, alignment accuracy is critical for high-resolution reconstruction. However, the
automatic alignment of a tilt series without fiducial markers remains a challenge. Here, we propose a
new alignment method based on Scale-Invariant Feature Transform (SIFT) for marker-free alignment.
The method covers the detection and localization of interest points (features), feature matching, feature
tracking and optimization of projection parameters. The proposed method implements a highly reliable
matching strategy and tracking model to detect a huge number of feature tracks. Furthermore, an incre-
mental bundle adjustment method is devised to tolerate noise data and ensure the accurate estimation of
projection parameters. Our method was evaluated with a number of experimental data, and the results
exhibit an improved alignment accuracy comparable with current fiducial marker alignment and subse-
quent higher resolution of tomography.

� 2014 Published by Elsevier Inc.

1. Introduction

Electron tomography (ET) is a promising technology that allows
the three-dimensional imaging of cellular ultrastructure. The
structure is reconstructed from a tilt series of micrographs taken
at different orientations. However, transformation and deforma-
tion of the sample are inevitable when the sample is tilted along
a fixed axis. To obtain high-quality reconstructed results, accurate
alignment is critical before reconstruction.

There are two types of alignment methods, fiducial marker-
based alignment and marker-free alignment. Fiducial marker-
based alignment is currently the most accurate alignment method.
Unfortunately, fiducial markers are not always accessible, because
sometimes it is impossible to have gold beads embedded in a sam-
ple and sometimes it is difficult to find enough gold beads at the
region of interest. Moreover, the use of colloidal gold may interfere
with the sample and introduce undesirable artifacts. Additionally,
the selection of markers is usually manual and very time-
consuming. In contrast, marker-free alignment does not require
fiducial markers. It can be subdivided into two categories of meth-
ods, correlation methods and feature-based methods. Correlation

methods, such as cross-correlation (Guckenberger, 1982) and com-
mon lines (Liu et al., 1995), have been widely used in coarse align-
ments to solve large translation or in-plane rotation problems.
However, these methods neglect motion in real space and result
in accumulated correlation errors. To compensate for these short-
comings, Winkler and Taylor (2006) proposed a solution combin-
ing cross-correlation with a reconstruction reprojection method,
but this method consumes excessive computational resources.
Compared with correlation methods, feature-based methods pro-
vide a model that is closer to the real conditions and is not compu-
tationally intensive. Feature-based methods utilize image features
as virtual markers and align images by minimizing the reprojection
error of virtual markers. The principle of feature-based alignment
is same as that of marker alignment. Usually, features can be deter-
mined by informative surroundings, such as a Harris Corner
(Brandt et al., 2001; Brandt and Ziese, 2006), Canny edge, or con-
tour line (Phan et al., 2009), and appointed landmarks (Sorzano
et al., 2009). Castaño-Díez et al. (2007, 2010) used image patches
instead of corner points in the proceeding cryo-ET series. These
features are iteratively tracked from the corresponding area of
adjacent images according to the normalized cross-correlation.
However, such a tracking method is not always robust, especially
in the case of low Signal-to-Noise Ratio (SNR) where there are
insufficient distinguishable gray levels. These methods mainly
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introduce two types of errors that are highly influential with re-
spect to geometry parameter determination, feature localization
error and false matching.

Although feature-based methods are more accurate than corre-
lation methods, three key issues remain to be resolved. The first is
how to accurately detect and locate interest points (features). As
mentioned above, virtual markers are extracted with a computer
vision technique, which inevitably introduces localization errors.
The second is how to partition a huge amount of features into
tracks. Typically, an alignment operation involves hundreds of
images. For every image, thousands of features could be extracted.
Tracking hundreds of thousands of features is very time-
consuming. In addition, marker mismatching and matching colli-
sions must be resolved during tracking. The third issue is how to
optimize projection parameters after tracking. It is very difficult
to solve this problem because there are a large number of tracks
and the length of each track is relatively short compared to the size
of the image stack. Because not all of the tracks are consistent, a
robust method for parameter optimization must be used.

To overcome these problems, we propose a new marker-free
method based on Scale-Invariant Feature Transform (SIFT) to solve
marker-free alignment. SIFT is a well-known technique used in
computer vision that can locate points in scale-space and utilize
redundant feature information. Compared to other previous meth-
ods, our method has several advantages. First, we utilize SIFT to de-
tect and recognize a huge number of significant virtual markers
that are invariant to the changes of scale, orientation, noise etc.
After the ‘‘significant’’ or ‘‘interesting’’ points are detected, we fo-
cus only on the important parts of the tilt series, which potentially
ignores background areas. Second, in addition to the detection of
localization, the distinctive information of features is character-
ized, which makes feature matching and tracking more robust. Fur-
thermore, our method contains an effective tracking model to
make feature tracking more efficient and resistant to dubious
matching. Third, in contrast to previous methods using a simplified
version of the affine model (for example, the research in Brandt
et al., 2001; Brandt and Ziese, 2006), our method uses a more
parameterized model, which benefits from our high-quality track-
ing and can make further analysis of tilt series possible, resulting in
more accurate alignment. Experimental datasets were tested and
proved that our alignment method can optimize the parameters
with subpixel accuracy of the reprojection residual.

The remainder of the paper is organized as follows. In Section 2,
we introduce the framework of our method. First, we introduce the
usage of SIFT in electron micrographs and demonstrate our effec-
tive matching strategy and tracking model. Then, an incremental
bundle adjustment procedure designed especially for our approach
is proposed. In Section 3, we present our experimental results and
analysis. Section 4 is focused on discussion and conclusion.

2. Method

Our method consists of four steps. The first step is to extract the
precise location and descriptions of features from projection
images. We utilize SIFT to obtain subpixel feature localizations
and descriptor vectors with redundant information, which ensures
that the extracted features are invariant to scale, rotation and illu-
mination changes. The second step is to match corresponding fea-
tures. Because of the large number of feature points, we propose a
location-based search method to ensure accuracy and accelerate
the matching speed. The third step is to track matching pairs con-
sistently across the tilt series. Based on the transitivity of matched
peers, here we first develop a matching strategy to reduce the
matching cost and then propose a novel tracking model to reduce
tracking complexity. The final step is to optimize the projection

parameters with the configured tracks and, if necessary, to geo-
metrically transform the images. We first present the parameter
optimization model of our method, and then propose an incremen-
tal bundle adjustment method to solve the optimization problem.
Our approach obtains results with improved accuracy which is
comparable with that got by fiducial marker alignment.

2.1. Feature extraction with SIFT

One feature is composed of two parts, the location and distinc-
tive information (descriptor). In previous feature-based methods,
only the gray values in the neighborhood are considered for
cross-correlation, and the abundant information that the neighbor-
hood renders is neglected. Thus, such processes are apt to mis-
match and do not generate high-quality tracks. Our method
utilizes the SIFT detector (Lowe, 2004) to extract features. SIFT
can localize the most stable points in images and form the neigh-
borhood information into a 128-dimensional descriptor that con-
tains gradient and magnification information in a redundant
manner. In fact, SIFT has been widely used in low SNR image anal-
ysis, for example, Alzheimer’s disease detection in medicine
(Toews et al., 2010) and image stitching in ET (Kaynig et al.,
2010). These reports showed a high accuracy of localization and
discrimination of detail of SIFT. Mikolajczyk and Schmid (2005)
compared the SIFT descriptor with other invariant feature descrip-
tors and drew the conclusion that SIFT performed the best under
the changes of scale, rotation and illumination.

SIFT consists of the following four major stages: (1) Scale-space
extrema detection. (2) Keypoint localization. (3) Orientation
assignment. (4) Keypoint descriptor.

Scale-space extrema detection is to identify the locations which
appear repeatedly for the same object in different views and scales.
To detect locations that are invariant to the scale change of images,
we search for stable features across all possible scales using a con-
tinuous scale function known as scale space. The scale space is a
collection of the image function convolved with various Gaussian
kernels, which is defined as the function Lðx; y;rÞ:

Lðx; y;rÞ ¼ 1
2pr2 e�ðx

2þy2Þ=2r2 � Iðx; yÞ ð1Þ

where Iðx; yÞ is the input image, � is the convolution operation in x
and y. r is the Gaussian scale and various values of r will produce
different scale in the scale space. To efficiently detect stable key
locations in scale space, Lowe (1999) adopted scale-space extrema
in the difference-of-Gaussian (DoG) function, defined as Dðx; y;rÞ,
which can be computed from the difference of two nearby scales
separated by a constant multiplicative factor k:

Dðx; y;rÞ ¼ ðGðx; y; krÞ � Gðx; y;rÞÞ � Iðx; yÞ
¼ Lðx; y; krÞ � Lðx; y;rÞ ð2Þ

The DoGs of various Gaussians compose the DoG space. DoG is an
approximation of the scale-normalized Laplacian-of-Gaussian,
which is required for true scale invariance (Lindeberg, 1994). An
extremum point (maxima or minima of the DoG images which is
detected by comparing a central pixel to its 26 neighbors in 3� 3
regions at the current and adjacent scales) of scale-space can pro-
duce the most stable features for one image (Mikolajczyk, 2002).

Keypoint localization is to fit a candidate with its adjacent data
according to the location, scale, and ratio of the principal curva-
tures. Candidate points that have low contrast or are poorly local-
ized along the edges (points with peak value in the DoG but
sensitive to noise) will be rejected in this stage. This process pro-
vides a substantial improvement in the stability of features.

Orientation assignment is to assign one or several orientations
to each keypoint based on gradient directions. Orientations are
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