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Distance constraints, in principle, can be employed to determine information about the location of probes
within a three-dimensional volume. Traditional methods for locating probes from distance constraints
involve optimization of scoring functions that measure how well the probe location fits the distance data,
Keywords: exploring only a small subset of the scoring function landscape in the process. These methods are not
FRET ) guaranteed to find the global optimum and provide no means to relate the identified optimum to all other
Electron microscopy optima in scoring space. Here, we introduce a method for the location of probes from distance informa-
Eriggar:)clgg;:nmon tion that is based on probability calculus. This method allows exploration of the entire scoring space by

directly combining probability functions representing the distance data and information about attach-
ment sites. The approach is guaranteed to identify the global optimum and enables the derivation of con-
fidence intervals for the probe location as well as statistical quantification of ambiguities. We apply the
method to determine the location of a fluorescence probe using distances derived by FRET and show that

the resulting location matches that independently derived by electron microscopy.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The multi-dimensional scoring-function landscapes encoun-
tered in structural biology tend to be rugged and complex (Frau-
enfelder et al, 1991; Frauenfelder and Leeson, 1998). As a
consequence, simple optimization algorithms tend to get trapped
in local minima, unable to locate the globally optimal solution. A
multitude of search strategies such as, for example, simulated
annealing (Kirkpatrick et al., 1983) or genetic algorithms (Holland,
1975) have been developed over the years in order to overcome
this problem and these types of methods have been adapted to a
large variety of optimization problems in structural biology (see
for example Briinger et al.,, 1998, 2011; Webb et al., 2011; Das
and Baker, 2008; Chacén et al., 1998). Though superior to simple
direct optimization in that they can escape local minima, these
methods are neither guaranteed to identify the global optimum
nor do they provide simple ways to put the found optimum into
the context to other existing optima because only a small sub-set
of the global scoring landscape is sampled. In contrast, if the scor-
ing landscape can be explored in its entirety, not only the global
optimum can be identified without ambiguity, it can also be re-
lated to the rest of the scoring landscape so that confidence inter-
vals and significant levels can be obtained. It is then possible, for
example, to determine whether the global optimum is actually sig-
nificantly better at some desired confidence level than the second-
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best local optimum or whether the second-best optimum needs to
be considered a viable alternative solution at that confidence level.

Recently, methods for a more complete evaluation of scoring
function space based on probability theory and Bayesian inference
have been introduced in the context of structure determination by
NMR (Rieping et al., 2005) or with sparse data (Habeck, 2011).
Bayesian inference incorporates prior information and accounts
for ambiguities through probability distributions and is especially
useful when the observable to parameter ratio is low and the data
is insufficient to determine the parameters unambiguously. Here,
we consider the location determination of a probe from distance
constraints and known attachment sites. We propose a method
based on probability calculus that allows exploration of the entire
scoring function space by directly combining probability functions
representing the data without the construction of a likelihood
function as is required for Bayesian inference.

2. Methodology

In order to use probability calculus, we first need to convert the
experimental information into adequate probability functions p(x)
with

p(x) = Oforallx (1)

and
/ p(x)dx = 1 2)
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where the integral extends over the entire range of x, usually taken
as —oo to co. In the current context, x is a three-dimensional coor-
dinate [xq, X2, X3].

In the context of location determination from distance con-
straints we use two types of probability functions: (i) functions
that describe the location of a known entity, for example the
attachment site of a GFP label on a macromolecule or the location
of the label itself and (ii) functions that describe the distance be-
tween two entities such as distances derived from fluorescence
resonance energy transfer (FRET) between two fluorophores. Both
these functions are continuous in nature, justifying the use of prob-
ability functions for continuous variables.

Once the location and distance information is converted into
probability functions, probability calculus can be invoked to com-
bine the information (Kolmogorov, 1950). For independent infor-
mation defined in the same coordinate frame, probabilities need
to be point-wise multiplied at every x:

Pi(%) = pi(x) - p;(%) 3)

For independent information that has to be combined such as
finding the probability of a distance sphere p;(y) at every point in
space with probability pi(x), we are seeking the probability of the
sum of two independent variables and a convolution operation
needs to be performed:

Py(@) = (0, P))(2) = / Pi%) + py(z — %)dx, (4)

where * denotes convolution. The convolution theorem states that a
convolution between two functions is equivalent to the reverse
Fourier transform of the product of their Fourier transforms:

(p; = pj) = F~'(Flpi] - FIp)]) ()

For example, in a typical application where FRET between sev-
eral labels is used to determine the location of a probe, location
information from two different label pairs would be defined in
the same coordinate frame and the combined probability can be
constructed by simply multiplying the probability functions
describing the location information of each label pair voxel by vox-
el in real space. In case of distance information between two labels
and information about the attachment site of one of the labels, the
probability functions describing these two information sources
need to be convoluted.

While distance and location parameters are continuous vari-
ables and thus continuous probability functions need to be used,
it is advantageous for practical purpose to define those continuous
functions on a discreet grid. In particular this strategy allows the
use of sums instead of integrals so that, for example, Eq. (2) simpli-
fies to

> px) =1 (6)

where x is summed over all possible values. The choice of the grid
size should be fine enough to account for the ruggedness of the
scoring landscape so the global optimum can be determined
accurately.

2.1. Practical recipe

The rules described above give rise to a simple and general
practical recipe for obtaining probabilities of label locations in re-
spect to macromolecules in the presence of distance information
(see also Fig. 1):
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Fig.1. Schematic overview of methodology. (a) The common coordinate system is
defined with the origin (red cross) set to the center of the macromolecular structure
(white surface representation). (b) The probability functions for the locations of
attachment points (Ly, L, L3) are derived in the common coordinate system. (c) The
experimental distance constraints are mapped onto spheres centered at the origin
to derive the corresponding probability functions (D4, D,, D3). (d) The distance and
location probability functions are convoluted (Ly * Dy) to derive the probe location
probability functions for each location/distance pair. (e) All location/distance pair
probability functions are multiplied voxel-wise to derive the final probability
function for the probe location (green).

1. Define the common coordinate system. This will usually be con-
nected to structural information about a macromolecular
assembly, for example the coordinate system where the density
of an electron microscopy (EM) reconstruction is defined.

2. Define the bounding box. This step will provide a convenient
way for normalizing all probabilities and should be large
enough to contain all possible probability values appreciably
larger than zero so that [p(x) dx=1 inside the bounding box
and [p(x) dx=1 from —oco to +oo (Eq. (2)) are equivalent for
practical purposes. It is convenient to define the origin of the
coordinate system at the bounding box center.

3. Define grid size for calculations. This will define how the con-
tinuous probability function is discretized. The grid size should
be small enough to capture the ruggedness of the probability
landscapes faithfully. Normalization is then easily achieved
for each probability function by enforcing Zp(x)=1 (Eq. (6)),
summing over all x in the bounding box.

4. Construct probability functions for known label locations in
respect to coordinate system within bounding box. This should
incorporate all anticipated uncertainties such as those coming
from flexible linkers or from docking of atomic structures into
lower resolution densities or envelopes. Also this step depends
very heavily on the type of information available. It could be as
simple as taking the coordinate of a known label location in a
crystal structure, using its B-factor to get a Gaussian probability
function. Some more involved cases will be presented in the
application example.

5. Construct probability functions for distances between entities
(i.e. labels) inside of bounding box, centered at origin. How this
is exactly achieved will depend strongly on the method
employed for determining the distances. For simple, relatively
rigid cross-linkers, a Gaussian approximation would suffice,
accounting for limited flexibility. A strategy for FRET distances
is described in the application example.
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