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RELION, for REgularized Likelihood OptimizatioN, is an open-source computer program for the refine-
ment of macromolecular structures by single-particle analysis of electron cryo-microscopy (cryo-EM)
data. Whereas alternative approaches often rely on user expertise for the tuning of parameters, RELION
uses a Bayesian approach to infer parameters of a statistical model from the data. This paper describes
developments that reduce the computational costs of the underlying maximum a posteriori (MAP) algo-
rithm, as well as statistical considerations that yield new insights into the accuracy with which the rel-
ative orientations of individual particles may be determined. A so-called gold-standard Fourier shell
correlation (FSC) procedure to prevent overfitting is also described. The resulting implementation yields
high-quality reconstructions and reliable resolution estimates with minimal user intervention and at
acceptable computational costs.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Macro-molecular structure determination by single-particle
analysis of electron cryo-microscopy (cryo-EM) images is a rapidly
evolving field. Over the past two decades many reconstructions
that reveal secondary structure elements have been obtained, e.g.
see (Boettcher et al., 1997; Lau and Rubinstein, 2012; Lander
et al,, 2012), and recently several reconstructions to near-atomic
resolution have been reported (Wolf et al., 2010; Liu et al., 2010;
Yang et al., 2012). Improvements in electron microscopes and bet-
ter computational tools for image processing have been important
contributors to these successes. Moreover, on-going hardware
developments such as direct-electron detectors (Milazzo et al.,
2011; Brilot et al., 2012; Bammes et al., 2012) and phase-plates
(Nagayama, 2011; Barton et al.,, 2011; Fukuda et al.,, 2012) are
expected to improve data quality even further in the near future.
This is likely to enhance the applicability of cryo-EM structure
determination, as less noisy images will allow the visualization
of smaller macro-molecular complexes.

The increased applicability of the technique is expected to
attract new researchers to the field. Because conventional data
collection and processing procedures often rely on user expertise,
the needs for improved ease-of-use and automation are now
widely recognized. More convenient data collection schemes are
being developed through a combination of automated data acqui-
sition software (Suloway et al., 2005) and improvements in the
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latest generation electron microscopes (Shrum et al., in press;
Fischer et al., 2010). To cope with the large amounts of data from
these experiments, semi-automated image processing pipelines
and dedicated electronic notebooks have been proposed (Lander
et al., 2009; Ludtke et al., 2003). Continuing developments in these
areas are expected to increase the accessibility of cryo-EM struc-
ture determination to inexperienced users.

However, many cryo-EM projects still suffer from important
hurdles in image processing that cannot be overcome by automa-
tion and increased volumes of data alone. Existing image process-
ing procedures often comprise a concatenation of multiple steps,
such as particle alignment, class averaging, reconstruction, resolu-
tion estimation and filtering. Many of these steps involve the tun-
ing of specific parameters. Whereas appropriate use of these
procedures may yield useful results, suboptimal parameter set-
tings or inadequate combinations of the separate steps may also
lead to grossly incorrect structures, thus representing a potential
pitfall for newcomers to the field.

Recently, I described a Bayesian approach to cryo-EM structure
determination, in which the reconstruction problem is expressed
as the optimization of a single target function (Scheres, 2012). In
particular, the reconstruction problem is formulated as finding
the model that has the highest probability of being the correct
one in the light of both the observed data and available prior infor-
mation. Optimization of this posterior distribution is called maxi-
mum a posteriori (MAP), or regularized likelihood optimization.
The Bayesian interpretation places the cryo-EM structure determi-
nation process on a firm theoretical basis, where explicit statistical
assumptions about the model and the data, as well as the optimi-
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zation strategy itself, can be discussed and improved if deemed
necessary. Whereas conventional refinement procedures employ
many ad hoc parameters that need to be tuned by an expert user,
the Bayesian approach iteratively learns most parameters of the
statistical model from the data themselves.

This paper describes the implementation of the Bayesian
approach to single-particle reconstruction in the stand-alone com-
puter program RELION, which stands for REgularized Likelihood
OptimizatioN. The theoretical implications of the statistical
approach represent a huge challenge for its implementation in a
useful computer program. Various algorithmic developments are
described that allow MAP optimization of single-particle recon-
structions at an acceptable computational cost. Moreover, the the-
oretical framework provided by the Bayesian approach may yield
valuable insights into outstanding questions. As an example of this,
I will describe an approach that uses the statistical data model to
estimate the accuracy with which individual particles may be
aligned and to quantify the contribution of different frequencies
to this. Finally, because in principle some degree of overfitting
might still go by unnoticed in the previously proposed MAP opti-
mization approach (Scheres, 2012), a new procedure is described
that eradicates the possibility of overfitting by the use of so-called
“gold-standard” FSC calculations (Henderson et al., 2012; Scheres
et al.,, 2012). Application of RELION to both simulated and experi-
mental data illustrates that reconstructions that are free from over-
fitting may be obtained in a highly objective manner, without
compromising reconstruction quality and at acceptable computa-
tional costs.

2. Approach
2.1. Theoretical background

MAP refinement of cryo-EM single-particle reconstructions is
based on the following linear model in Fourier space:

L
Xij = CTFy > PiVig+ Ny, 1)
=1

where:

e X;i is the jth component, with j=1,...,J, of the 2D Fourier
transform X; of the ith experimental image, withi=1,... N.
o CTF; is the jth component of the contrast transfer function for
the ith image.
e Vy is the Ith component, with [=1,...,L, of the 3D Fourier
transform V, of the kth of K underlying structures in the data
set. Multiple structures K may be used to describe structural
heterogeneity in the data, and K is assumed to be known. All
components Vy are assumed to be independent, zero-mean,
and Gaussian distributed with variance .
P? is a J x L matrix of elements ij‘;. The operation 3 1P“’V,d for
all j extracts a slice out of the 3D Fourier transform of the kth
underlying structure, and ¢ defines the orientation of the 2D
Fourier transform with respect to the 3D structure, comprising
a 3D rotation and a phase shift accounting for a 2D origin offset
in the experimental image. Similarly, the operation ZLP;?TX,;
for all I places the 2D Fourier transform of an experimental
image back into the 3D transform.
e Nj is noise in the complex plane, which is assumed to be inde-
pendent, zero-mean, and Gaussian distributed with variance 0',.2]-.

Imagining an ensemble of possible solutions, the reconstruction
problem is formulated as finding the model with parameter set @
that has the highest probability of being the correct one in the light
of both the observed data 2" and the prior information #. According

to Bayes’ law, this so-called posterior distribution factorizes into
two components:

P(O|Z,%) x P(Z|0,%)P(O|%) (2)

where the likelihood P(2'|©@,%) quantifies the probability of observ-
ing the data given the model, and the prior P(©|%) expresses how
likely that model is given the prior information. The likelihood is
computed based on the assumption of independent, zero-mean
Gaussian noise in the images, and one marginalizes over the orien-
tations ¢ and class assignments k. The variance U,.Zj of the noise com-
ponents is unknown and will be estimated from the data. Variation
of afj with resolution allows the description of non-white, or col-
oured noise. The prior is based on the assumption that the Fourier
components of the signal are also independent, zero-mean and
Gaussian distributed with unknown and resolution-dependent var-
iance 77 (see Scheres, 2012 for more details). The model @, includ-
ing all Vy, 65. and 72, that optimizes the posterior distribution
P(O|Z,%) is called the maximum a posteriori (MAP) estimate. Note
that previously discussed ML methods in the Fourier domain
(Scheres et al., 2007b) aimed to optimize P(Z'|©,%).

Optimisation of P(©|%', %) may be achieved by the expectation-
maximization algorithm (Dempster et al., 1977), in which case the
following iterative algorithm is obtained:
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where ")) ,» 1s the posterior probability of class assignment k and ori-
entation assignment ¢ for the ith image, given the model at itera-
tion number (n). It is calculated as follows:
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and P(k, $|©@™, %) may be used to express prior information about
the distribution of the hidden variables k and ¢. In practice, the
integrations over ¢ are replaced by (Riemann) summations over
discretely sampled orientations, and translations are limited to a
user-defined range. Also, the power of the signal, 72, and of the
noise, 05, are estimated as 1D vectors, varying only with the resolu-
tion of Fourier components j and I.

The iterative algorithm in Egs. (3)-(7) is started from an initial
estimate for Vj: the starting model. If K > 1, multiple different
starting models are obtained by random division of the data set
in the first iteration. The user controls the number of models K that
is to be refined simultaneously. Initial estimates for 7y and g;; are
calculated from the power spectra of the starting model and indi-
vidual particles, respectively.

It is important to note that the algorithm outlined above is a
local optimizer. Thereby, the outcome of the refinement depends
on the suitability of the starting model, and grossly incorrect start-
ing models may lead to suboptimal results. Typically, to reduce
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