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a b s t r a c t

Small angle X-ray scattering (SAXS) experiments are widely applied in structural biology. The SAXS
experiments yield one-dimensional profile that needs further analysis to reveal structural information.
The pair distance distribution function (PDDF), PðrÞ, can provide molecular structures more intuitively,
and it can be used to guide ab initio model reconstructions, making it a critical step to derive PðrÞ from
experimental SAXS profiles. To calculate the PðrÞ curves, a new method based on a specially designed
parametric functional form is developed, and implemented in pregxs. This method is tested against both
synthetic and experimental data, the estimated PðrÞ functions are in good agreement with correct or
known PðrÞ. The method can also predict the molecular size. In summary, the pregxs method is robust
and accurate in PðrÞ determination from SAXS profiles. The pregxs source code and an online server are
available at http://www.sastbx.als.lbl.gov.

Published by Elsevier Inc.

1. Introduction

The knowledge of macromolecule structures is important to
understand the molecular interactions and mechanism (Orengo
et al., 1999). High resolution structures provide detailed informa-
tion, but applications hinge on experimental limits: X-ray crystal-
lography relies on the growth of good crystals that can survive high
dose of X-rays during the data collection, while the nuclear mag-
netic resonance (NMR) method is mostly applicable to relative
small molecules (Putnam et al., 2007; Madl et al., 2011). Further-
more, probing high resolution structural information often intro-
duces additional constraints, such as crystal packing, thus
making it more challenging to study the dynamics of molecules.
The small angle X-ray scattering (SAXS) is an alternative technique
used to study macromolecular structure and dynamics (Glatter and
Kratky, 1982; Koch et al., 2003; Hura et al., 2009; Mertens and
Svergun, 2010). Although the SAXS experiments only provide low
resolution information, wider range structural and dynamics infor-
mation can be probed by changing the buffer compositions. On the
other hand, since the molecules are randomly oriented in solution,
the scattering profile is the angular average of scattering patterns.
The SAXS profiles are 1D curves (IðqÞ), where the intensity is the
function of scattering angles. The scattering angle is usually

converted to momentum transfer q (q ¼ 4p sinðhÞ=k where k is
the wavelength and 2h is the scattering angle).

The scattering intensity profiles do not reveal intuitive struc-
tural information, which usually require some proper transforma-
tions of the SAXS profile, IðqÞ. For example, molecular weight and
the radius of gyration (Rg) can be obtained from the Guinier anal-
ysis in the Guinier region, typically requiring (0 6 qRg 6 1:3) for
globular proteins (Koch et al., 2003). More structural information
can be learned by determining the pair distance distribution func-
tion, or PðrÞ. The PðrÞ function reveals valuable information about
the shape of molecules, allowing more intuitive interpretation of
the intensity profile, IðqÞ. Further more, the PðrÞ is also critical in
real space 3D model constructions. For example, the DAMMIF
method requires accurately determined PðrÞ to obtain dummy
atom models that correspond to the scattering profiles (Franke
and Svergun, 2009).

The IðqÞ and PðrÞ are closely related. It is straightforward to
calculate the intensity profile, where

IðqÞ ¼
Z dmax

0
PðrÞ sinðqrÞ

qr
dr ð1Þ

which can be derived from the Debye formula (Debye, 1915), and
the inverse transformation allows one to calculate PðrÞ:

PðrÞ ¼ r
2p2

Z 1

0
qIðqÞ sinðqrÞdq ð2Þ

Although this formula provides a direct way of calculating PðrÞ,
it is not practical in reality, because the IðqÞ is only available at
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discrete points for limited q-range. Noise introduced during the
data collection and processing makes it more challenging to calcu-
late PðrÞ using the direct Fourier transformation (Koch et al., 2003).

Another approach to estimate PðrÞ is by estimating PðrÞ under
proper assumptions and using Eq. (1) to calculate the intensity pro-
file, then iteratively find the PðrÞ that yields the optimal fit to the
IðqÞ profile. Using this approach, the estimation of PðrÞ is converted
to a constraint optimization problem: finding the PðrÞ with associ-
ated IðqÞ that agrees to experimental data while ensuring the sat-
isfaction of PðrÞ to the imposed constraints. Several methods
have been implemented following this approach (Glatter, 1977;
Hansen and Pedersen, 1991; Svergun, 1992; Müller and Hansen,
1994; Krauthauser and Nimtz, 1996; Hansen, 2000; Swain et al.,
2001; Ilavsky and Jemian, 2009). The PðrÞ is typically represented
using a set of kernel functions. For example, Glatter proposed the
usage of cubic B splines as the smooth kernel functions (Glatter,
1977), while Moore used a set of sine functions with different fre-
quencies (Moore, 1980). The optimization goal is to minimize the
v2 between the model intensity and the experimental data, while
enforcing smoothness and non-negativeness of PðrÞ. Svergun and
coworkers successfully developed PðrÞ calculation routines with
perceptual criterion evaluations to the yielded PðrÞ (Svergun,
1992). To obtain the correct PðrÞ, the molecular size measured as
the maximum distance between atoms, the dmax, is required and
usually has to be determined as a priori. Based on the radius of
gyration, Rg , the dmax can be narrowed down to a specific range
for globular proteins. Different values of dmax in the previously
determined range will be tried to calculate the PðrÞ associated with
each dmax. Then the PðrÞ distributions should be visually inspected
and figure out the optimal PðrÞ together with the dmax. Encourag-
ingly, there is some recent progresses in reducing human interven-
tions, for example, the program AUTOGNOM is capable of finding
the optimal dmax (Petoukhov et al., 2007).

In this paper, we propose a method that determines the PðrÞ
using a parametric functional form with built-in smoothness and
non-negative characteristics. Because this parametric functional
form has intrinsic properties that match the PðrÞ distributions of
compact molecules, constraints are reduced. The method, pregxs
(abbreviation for PðrÞ estimation given X-ray scattering data), runs
in two modes: optimize the PðrÞ with the prior dmax, or search both
the PðrÞ and the dmax. This method was tested using both synthetic
data calculated from PDB models and experimental data. The com-
parisons to the PðrÞ derived from PDB models or calculated using
other methods demonstrate that the pregxs obtains correct PðrÞ
from intensity profile IðqÞ.

2. Methods

In this section, the detailed method of using the specially de-
signed parametric function to estimate the PðrÞ is described. An
efficient way of calculating intensity profiles is also derived, fol-
lowed by SAXS profile comparison methodology and how to utilize
prior knowledge to improve PðrÞ estimation.

2.1. Parameterization

A probability density function (pdf) pðxÞ with ð�1 6 x 6 1Þ can
be expressed as the product of a prior pdf gðxÞ and an exponentiat-
ed Chebyshev polynomial series:

pðxÞ ¼ gðxÞ exp
XM

m¼0

amTmðxÞ
" #

ð3Þ

The prior pdf gðxÞ is chosen to satisfy boundary conditions, i.e.,
pðxÞ is zero at end points. The pair distance distribution function
(PðrÞ) of unit sphere is the default prior pdf, gðxÞ (note that

x ¼ r � 1 to scale the function to [-1,1], where r is the distance be-
tween atoms) (Glatter and Kratky, 1982). The positive exponential
modification terms, together with the prior pdf, guarantee that the
resulted function pðxÞ is continuously non-negative throughout
[�1,1]. While the prior pdf gðxÞ sets the basic shapes for the pðxÞ,
the coefficients of Chebyshev polynomials (TmðxÞ) for the exponen-
tial modifier can be selected to sample a wide variety of probability
distribution functions.

The Chebyshev polynomials are chosen as the modifier terms,
because they are orthogonal in range [�1,1] with weight 1ffiffiffiffiffiffiffiffi

1�x2
p

(Schwerdt, 1966). The Chebyshev polynomial at degree m has m
roots, the resulted pðxÞ can model curves with multiple modals.
Due to the orthogonality of Chebyshev polynomials, more details
of the pðxÞ can be added by including higher order terms
(Fig. 1a). By varying the coefficients {am}, the parametrized func-
tion pðxÞ can also be changed, as demonstrated by Fig. 1b.

2.2. Intensity profile calculation

The pðxÞ can be transformed into a (normalized) pair distance
distribution function PðrÞ via

r ¼ dmax

2
ðxþ 1Þ ð4Þ

with the associated Jacobian

Jðr; xÞ ¼ @r
@x
¼ dmax

2
ð5Þ

For any given PðrÞ, the corresponding scattering profile can be com-
puted using Eq. (1). Since the PðrÞ is changed during the optimiza-
tion process, the direct implementation of Eq. (1) is slow. To
speed up the intensity calculation without losing much accuracy,
the equation is rewritten as:

IðqÞ ¼
X

i

PðriÞ
Z riþ1

ri

sinðqrÞ
qr

dr ð6Þ

setting

Sðri; qÞ ¼
Z riþ1

ri

sinðqrÞ
qr

dr ð7Þ

One gets a fast intensity calculation for any given PðrÞ, with Sðri; qÞ
precomputed:

IðqÞ ¼
X

i

PðriÞSðri; qÞ ð8Þ

2.3. Model-data correspondence

The pair distance distribution function PðrÞ can be adjusted by
changing the parameters famg. The discrepancy between the ob-
served data and the PðrÞ associated intensity is measured using
the v2 scoring function, defined as:

v2 ¼ 1
Nobs

XNobs

j¼1

IobsðqjÞ � kIcalcðqjÞ
rj

� �2

ð9Þ

where the factor k is a scaling factor that is absorbed in the coeffi-
cient a0.

2.4. Prior knowledge

When adjusting the coefficients famg in PðrÞ to maximize the
correspondence between calculated and observed scattering data
(via Eq. (6)), one is at the risk of over-fitting the data when the
number of parameters is large. Specifically, the inclusion of a large
number of Chebyshev polynomials can introduce large oscillations
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