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a b s t r a c t

New instrumentation for three-dimensional electron microscopy is facilitating an increase in the through-
put of data collection and reconstruction. The increase in throughput creates bottlenecks in the workflow
for storing and processing the image data. Here we describe the creation and quantify the throughput of a
high-throughput infrastructure supporting collection of three-dimensional data collection.

� 2012 Elsevier Inc. All rights reserved.

Single particle three-dimensional electron microscopy (3DEM)
is a powerful technique for determining the structures of biologi-
cally relevant macromolecules with several structures now
approaching atomic resolution. One of the primary factors that
limit resolution of single particle reconstructions is the number
of particles that contribute to the reconstruction. So far, the struc-
tures that approach atomic resolution have masses of around
1 MDa or greater, and the number of asymmetric units contribut-
ing to the structures are from several hundred thousand to several
millions of subunits (Cong et al., 2010; Ludtke et al., 2008; Zhang
et al., 2008; Zhou, 2011), which agrees well with calculations of
the dependence of resolution on numbers of particles (Henderson,
1995; LeBarron et al., 2008; Rosenthal and Henderson, 2003; Stagg
et al., 2008). At the same time that the field is approaching atomic
resolution for single particle reconstructions, techniques for deal-
ing with heterogeneous data are being developed for tomographic
data (Stölken et al., 2011; Winkler, 2007). In the tomographic case,
tomographic subvolumes are aligned and classified to sort out the
heterogeneity in three-dimensions. Like with single particle data,
the quality of subvolume averaging depends on the total number
of subvolumes that can be collected. Thus, both single particle
and tomographic data collection are driving for an increasing
amount of raw data to be able to derive the best possible 3D inter-

pretations. The pressure for more and more data creates bottle-
necks in the structure determination pipeline; disk space is
required to store all the raw data, increased processing power is re-
quired to process the data in a reasonable amount of time, and the
disk storage must be able to accommodate reads and writes from
many different requests at the same time.

In addition to the techniques requiring more data, new detection
devices are coming online such as cameras with large arrays of
pixels (Ellisman et al., 2011), hybrid pixel detectors (Faruqi and
Henderson, 2007), and monolithic active pixel sensor (MAPS) direct
electron detectors (DDD) (Bammes et al., 2012; Milazzo et al.,
2011). These developments have the potential to dramatically in-
crease the demands for processing and storage. The commercial
MAPS DDDs such as the Direct Electron DE-12, FEI Falcon, and
Gatan K2 have fast readout rates with the latter device having a rate
of up to 400 frames per second. In the simplest case, many DDD
frames are integrated to produce a single EM exposure, and the
individual frames contributing to the final exposure are discarded.
However there are many potential reasons for storing the contrib-
uting frames including dose fractionation and monitoring specimen
movement due to beam induced motion (Brilot et al., 2012). Thus,
DDDs have the potential to both increase throughput and increase
the amount of storage required for the raw data. At the same time
that DDDs are being developed, the cameras are getting larger in
pixel area (Ellisman et al., 2011). Doubling the linear dimensions
of a camera quadruples the storage requirements for an individual
image. These technological developments combine to dramatically

1047-8477/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jsb.2012.07.009

⇑ Corresponding author at: Florida State University, Tallahassee, FL 32306, USA.
E-mail addresses: sstagg@fsu.edu, sstagg@mac.com (S.M. Stagg).

Journal of Structural Biology 180 (2012) 254–258

Contents lists available at SciVerse ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/ locate/y jsbi

http://dx.doi.org/10.1016/j.jsb.2012.07.009
mailto:sstagg@fsu.edu
mailto:sstagg@mac.com
http://dx.doi.org/10.1016/j.jsb.2012.07.009
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi


increase the demands on the processing pipeline and increase the
pressure on the previously mentioned bottlenecks.

Dealing with the volume of data coming from EM platforms uti-
lizing new technologies and high-throughput automated data col-
lection requires a nonstandard approach to data storage and
processing. Moreover, high-end instruments support many users
each with unique data acquisition and storage requirements. The
storage and processing facility must be flexible enough to accom-
modate the different needs of multiple users. This requirement
increases the dependence on information technology and compu-
tational architecture expertise to acquire the appropriate hard-
ware, software, and support multiple users. Utilizing expertise
already in place at a high performance computing (HPC) center
facilitates supporting a high-throughput kind of device. However,
because high-throughput depends on the robust performance of
both the microscope and the processing machines, the consider-
ations described here will be the same even for labs with in-house
clusters or that run other automated data collection applications
(Mastronarde, 2005; Nickell et al., 2005; Zheng et al., 2007).

Here we describe the throughput and methods for integration of
an high performance computing infrastructure with a Titan Krios
(FEI Company) equipped with a 4 � 4 k pixel CCD camera with auto-
mated data collection and processing with Leginon (Suloway et al.,
2005) and Appion (Lander et al., 2009). Though we describe our set-
up using these specific tools, the considerations described are gen-
eralizable to any resource running 24 h-a-day data collection. We
describe the considerations for hardware and the tools and method-
ologies used to ensure seamless integration and ensure dependen-
cies on the processing machines do not adversely impact the
availability of the microscope. The setup is scalable and is described
with enough detail that our setup can be replicated at other loca-
tions by individuals with modest system administration expertise.

1. Quantitation of throughput

Data collection statistics were acquired for several single parti-
cle and tomographic data collection sessions on the Titan Krios
equipped with a Gatan 4 � 4 k Ultrascan CCD with four port read-
out using automated data collection with Leginon. With single par-
ticle data collection, the throughput depends on several factors
such as the readout rate of the camera, the stability of the goniom-
eter (drift-rate after a move), and the number of images that can be
acquired per target area. We measured the throughput for two data
collection sessions with typical Leginon data collection parameters.
Dataset 1 was a COPII complex preserved in vitreous ice over a
holey carbon film and was collected at 59,000� magnification
(1.5 Å/pix) for final exposures. We were able to collect three
images per hole for this session. The overall exposure rate deter-
mined as the total number of high magnification exposures over
the total session time for this dataset was 95 exposures/hour. Data-
set 2 was an adeno-associated virus (AAV) dataset at 120,000�
(0.65 Å/pix), and we collected 93 exposures/hour for this session.
For both sessions, the setup time before fully automated data col-
lection was �3 h. The diameter of the holes in the support film for
both datasets was 2 lm and the diameter of the e� beam was
1.4 lm. This resulted in some beam overlap in the center of the

holes, but the area that was overlapping was not imaged by the
camera at those magnifications. Given that the beam diameter is
required to be greater than 1.3 lm in order to maintain parallel
illumination with our imaging conditions, three exposures per hole
is the maximum we can attain. The structures associated with
these data are being published elsewhere, but the AAV data recon-
structed to 4.5 Å resolution, which shows that the data collection
conditions are sufficient for high-resolution (Lerch et al., 2012).
The images are 4 � 4 k pixels and are stored as 16 bit signed floats
in MRC format that results in an image that takes up 64 MB of disk
space. Collecting single particle data in this way for 24 h requires
�144 GB of disk space.

The situation is similar for tomographic data. In a tomographic
data collection session with typical Leginon data collection param-
eters, we collected 119 images per tilt series and could collect
1.85 series per hour. In 24 h, we can collect 44 tilt series, which
in turn takes up 340 GB of disk space. The Titan Krios can be oper-
ated 24 h-a-day for 6 days-a-week. If we assume 3 days of single
particle collection and 3 days of tomographic collection, we would
require �1.5 TB of disk storage per week. These data are summa-
rized in Table 1.

Given the throughput afforded by automation and a high-end
microscope, it is unfeasible to store the raw data locally on the
computer that is driving the data collection. Moreover, processing
this much data takes some time, and in a high-throughput sce-
nario, the data is processed immediately after it is acquired. This
means that data collection and processing are occurring simulta-
neously on the same disk volume. Depending on the number of
processing jobs, this can be quite taxing on the disk and network
that is serving the data. Some of these problems are solved by host-
ing the data on a distributed file system, but then the limit on the
rate of data acquisition becomes dependent on the bandwidth and
traffic load of the network. These considerations led us to create a
setup where data are staged locally on the computer that runs
Leginon and then moved in real time to an off-site secondary data
storage system that is connected to the processing computers.

Hosting the data in two physical locations presented a problem
for the high-throughput multi-user scenario. The standard setup
for data acquisition and processing with the Leginon/Appion soft-
ware requires a LINUX computer that runs Leginon and is con-
nected to the microscope computer. The Leginon computer also
requires network connectivity to a MySQL database to host the
metadata and a disk volume to host the image data (Fig 1A). Both
the computer driving data collection and the computers doing pro-
cessing require access to the same image data and database. If we
hosted a single database off-site and the network went down, the
data collection would go down with it. This problem and the prob-
lem of how to store the large volume of image data were solved
through the use of a data replication scheme. The computer that
is directly connected to the microscope computer hosted a copy
of the MySQL database and a small volume of the most recently ac-
quired microscope images, and the image data and metadata data-
base were replicated to a high-performance computing facility
with high capacity for disk space and network traffic (Fig. 1B).
The duties performed by the HPC computers are split into two
functions: (1) pre-processing which includes tasks like particle
picking, CTF estimation, and preliminary image classification, and

Table 1
Data collection and throughput statistics.

Collection type Images/target Time between
exposures (s)

Time between
holes (s)

Overall exposure rate Images/day Disk consumption/day

Single particle data collection 3 16.5 76 94 images/hr 2256 144 GB
Tomographic data collection 119 19.5 162 1.83 series/hr 5226 340 GB
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