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a b s t r a c t

Spastin belongs to the meiotic subfamily, together with Vps4/SKD1, fidgetin and katanin, of AAA (ATPases
associated with diverse cellular activities) proteins, and functions in microtubule severing. Interestingly,
all members of this subgroup specifically contain an additional a-helix at the very C-terminal end. To
understand the function of the C-terminal a-helix, we characterised its deletion mutants of SPAS-1, a
Caenorhabditis elegans spastin homologue, in vitro and in vivo. We found that the C-terminal a-helix plays
essential roles in ATP binding, ATP hydrolysing and microtubule severing activities. It is likely that the
C-terminal a-helix is required for cellular functions of members of meiotic subgroup of AAA proteins,
since the C-terminal a-helix of Vps4 is also important for assembly, ATPase activity and in vivo function
mediated by ESCRT-III complexes.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Spastin (SPAS-1 in Caenorhabditis elegans) is a member of the
AAA (ATPases associated with various cellular activities) protein
family (Hazan et al., 1999; Matsushita-Ishiodori et al., 2007). It
has been demonstrated that spastin has an ATP-dependent micro-
tubule severing activity (Roll-Mecak and McNally, 2010). Spastin is
a causative agent for human disease, hereditary spastic paraplegia
(HSP) (Hazan et al., 1999; Svenson et al., 2001) and defects in
microtubule severing activity of mutant spastin are considered to
be a cause of axonal degeneration in HSP McDermott et al., 2003;
Sherwood et al., 2004; Trotta et al., 2004; Evans et al., 2005; Salinas
et al., 2005; Wood et al., 2006; Yu et al., 2008a). AAA proteins gen-
erally assemble into a hexamer, whose formation is critical for
their function. It has been demonstrated that human spastin forms
a hexamer in an ATP-dependent (White et al., 2007) or -indepen-
dent (Pantakani et al., 2008) manner and that Drosophila spastin
and C. elegans SPAS-1 form a hexamer in an ATP-dependent man-
ner (Roll-Mecak and Vale, 2008). In contrast, we recently found
that SPAS-1 forms a hexamer in an ATP-independent manner,
when highly concentrated SPAS-1 was analysed in vitro (Matsush-
ita-Ishiodori et al., 2009). In addition, we demonstrated that

SPAS-1 interacts with microtubules through MTBD (microtubule
binding domain) of SPAS-1 and thus is enriched on microtubules,
leading to form a hexamer in an ATP-independent manner
(Matsushita-Ishiodori et al., 2009). It is noteworthy, however, that
there is no direct evidence so far that a hexamer is the form bound
to microtubules. It could be a hexamer or a superstructure of
several hexamers.

Together with Vps4/SKD1 (VPS-4 in C. elegans), fidgetin (FIGL-
1), and katanin (MEI-1), spastin (SPAS-1) belongs to the meiotic
subfamily of AAA proteins (Fröhlich, 2001; Lupas and Martin,
2002). Spastin, katanin and fidgetin have been demonstrated to
function in microtubule severing (McNally and Vale, 1993; Evans
et al., 2005; Roll-Mecak and Vale, 2005; Zhang et al., 2007; Roll-
Mecak and McNally, 2010). In contrast, Vps4 forms a dodecameric
double-ring structure (Scott et al., 2005; Gonciarz et al., 2008; Yu
et al., 2008b; Landsberg et al., 2009) and functions in endocytic
trafficking, virus budding and cytokinesis mediated with ESCRT-
III complexes (Hurley and Hanson, 2010). Interestingly, all mem-
bers of this subgroup specifically contain an additional a-helix at
the very C-terminal end (Scott et al., 2005). It has been revealed
that the C-terminal a-helix is important for ATPase activity and
microtubule severing of Drosophila spastin (Roll-Mecak and Vale,
2008) and for Vps4 assembly and ATPase activity in vitro and func-
tion in vivo (Vajjhala et al., 2008).

Here, we examined the importance of the C-terminal a-helix of
the microtubule severing enzyme SPAS-1 of C. elegans. We demon-
strate that the C-terminal a-helix plays an essential role in ATP bind-
ing, ATP hydrolysing and microtubule severing activities of SPAS-1.
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2. Materials and methods

2.1. Cell culture, transfection and immunocytochemistry

Full-length cDNA fragments for spas-1 was cloned into pcDNA3
(Matsushita-Ishiodori et al., 2007). Site-directed mutagenesis in
spas-1 was carried out by using QuikChange II XL Site-directed
mutagenesis Kit (Stratagene). Introduction of desired mutation
was confirmed by DNA sequencing. HEK293 cells were cultured
in DMEM supplemented with 10% FBS and were transfected by
using FuGENE6 (Roche) according to the manufacturer’s instruc-
tions. Cells were fixed with 4% paraformaldehyde and treated with
a Cy3-conjugated anti-FLAG antibody (Sigma) and an FITC-conju-
gated anti-a-tubulin antibody (DM1A; Sigma) for immunofluores-
cence microscopy.

2.2. Purification of proteins

DNA fragments encoding wild-type and mutant SPAS-1 were
cloned into pET15b (Matsushita-Ishiodori et al., 2009). Plasmids
were introduced into Escherichia coli BL21(DE3). Transformants
were grown at 30 �C, and expression of wild-type and mutant

SPAS-1 was induced by the addition of IPTG (0.5 mM), followed
by growth for 3 h. SPAS-1 proteins were purified as described pre-
viously (Matsushita-Ishiodori et al., 2009). Proteins purified were
suspended in Storage buffer (25 mM Tris–HCl (pH 7.5), 50 mM
NaCl, 0.01% NP-40, and 10% glycerol), and stored at –80 �C. For
fluorescence spectroscopy, NP-40 was omitted from purification
and storage solutions.

2.3. Malachite green ATPase assay

ATPase activity was measured at 30 �C using the malachite
green colorimetric assay as described previously (Akiyama et al.,
1996; Matsushita-Ishiodori et al., 2009). Sodium phosphate was
used as a standard.

Microtubules were prepared from porcine brain a/b-tubulin di-
mers as described previously (Matsushita-Ishiodori et al., 2009).

2.4. Fluorescence spectroscopy

Fluorescence spectra of tryptophan were measured in the reac-
tion mixture either with or without 3 mM ATP. The excitation
wavelength was set at 295 nm and tryptophan emission was mon-
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Fig.1. Requirement of the C-terminal a-helix of SPAS-1 for microtubule severing. (A) Schematic diagram of wild-type SPAS-1 (SAPS-1WT) is shown. MIT, microtubule
interacting and trafficking domain; MTBD, microtubule binding domain; AAA, AAA ATPase domain. (B) FLAG-tagged SPAS-1 mutants (SPAS-11–432, SPAS-11–435, SPAS-11–447,
SAPS-1WT, and SAPS-1K437/441P) were overexpressed in HEK293 cells. Transfected cells were immunostained with anti-FLAG (left) and anti-a-tubulin (middle) antibodies.
Merged plus DAPI images are also shown (right). C-terminal amino acid sequences and predicted secondary structure for each SPAS-1 mutant are presented. C, coil; E,
b-sheet; H, a-helix. (C) C-terminal amino acid sequences of spastin homologues of C. elegans, D. melanogaster and H. sapiens. Amino acid residues, whose mutations have been
identified from HSP patients, are shown with dots.
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