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a b s t r a c t

Cryo-electron microscopy (cryoEM) can visualize large macromolecular assemblies at resolutions often
below 10 Å and recently as good as 3.8–4.5 Å. These density maps provide important insights into the
biological functioning of molecular machineries such as viruses or the ribosome, in particular if
atomic-resolution crystal structures or models of individual components of the assembly can be placed
into the density map. The present work introduces a novel algorithm termed BCL::EM-Fit that accurately
fits atomic-detail structural models into medium resolution density maps. In an initial step, a ‘‘geometric
hashing’’ algorithm provides a short list of likely placements. In a follow up Monte Carlo/Metropolis
refinement step, the initial placements are optimized by their cross correlation coefficient. The resolution
of density maps for a reliable fit was determined to be 10 Å or better using tests with simulated density
maps. The algorithm was applied to fitting of capsid proteins into an experimental cryoEM density map of
human adenovirus at a resolution of 6.8 and 9.0 Å, and fitting of the GroEL protein at 5.4 Å. In the process,
the handedness of the cryoEM density map was unambiguously identified. The BCL::EM-Fit algorithm
offers an alternative to the established Fourier/Real space fitting programs. BCL::EM-Fit is free for aca-
demic use and available from a web server or as downloadable binary file at http://www.meilerlab.org.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Cryo-electron microscopy (cryoEM) (Lepault et al., 1983) has
evolved in the past decade as an important tool to obtain medium
resolution structures of biological macromolecular assemblies in
the form of density maps. One challenge is to dock high resolution
experimental structures, obtained by X-ray crystallography (Ken-
drew et al., 1958) and nuclear magnetic resonance (NMR) (Wüth-
rich, 1990), or models of individual proteins into these density
maps to arrive at quasi atomic-detail representations of the macro-
molecular assembly. This procedure identifies regions of confor-
mational change and regions that can be assigned to proteins of

uncharacterized structure or which are characterized only in
isolation.

Several protocols have been developed to fit atomic structures,
usually obtained by X-ray crystallography or NMR, into low and
medium resolution density maps (Fabiola and Chapman, 2005;
Wriggers and Chacón, 2001). The computational problem amounts
to determining six degrees of freedom, three rotational and three
translational. Exhaustive searches systematically seek within this
six-dimensional parameter space to optimize the cross correlation
coefficient (CCC), which consumes significant amounts of computa-
tional time (Korostelev et al., 2002; Roseman, 2000). Computa-
tional time can be reduced by the use of a fast Fourier
transformation accelerated translational search as implemented
in the ‘‘COLORES’’ program within the SITUS package (Wriggers
et al., 1999). In this approach only the three rotational degrees of
freedom are searched in an exhaustive fashion in real space, while
the translational degrees of freedom are searched in Fourier space.
For both algorithms the step size impacts the speed of the calcula-
tion, but also the reliability and quality of the solution. An optimal
local fit can be found with Chimera. It provides the benefit of a
graphical user interface and an implementation of gradient refine-
ment (Goddard et al., 2007). This refinement is only local and re-
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quires that the initial placement is closer to the correct solution
than the protein diameter. Gradient based local minimization has
been implemented on general purpose graphical processing units
(GPGPU) showing speed ups of at least 30 with the same accuracy
as a CPU version (Woetzel et al., 2011).

To further increase the speed of fitting, vector quantization was
introduced (Wriggers and Birmanns, 2001). Single molecule data is
represented by k so-called codebook vectors for high resolution
protein structure data and low resolution density maps. In a search
within the k! permutations the best fit is identified by the lowest
residual RMSDCa after superimposition. This ‘‘QDOCK’’ method in
the SITUS program is fast and reliable for rigid body docking and
can be used for flexible docking as well. Difficulties arise however,
if the density map contains different and multiple protein
structures.

Protein structures obtained by X-ray crystallography often dif-
fer from the form of the protein observed in the cryoEM experi-
ment. This can be the case if the protein was modified to
facilitate crystallization or if a comparative model was built from
a crystal structure of a homologous protein. In these cases the
atomic model might not reflect all of the structural and dynamical
properties observed in the cryoEM map. Therefore, flexible docking
protocols were developed to overcome the limitations of rigid body
fitting. For example, structural alignments of one protein to pro-
teins in the same super family can be used to sample different con-
formations and improve the CCC (Velazquez-Muriel and Carazo,
2007). Alternatively, normal mode based fitting varies the coordi-
nates of the structure within reasonable limits while docking
(Tama et al., 2004). Molecular dynamics approaches have also been
tested to optimize the fit of an atomic structure into electron den-
sity maps (Schröder et al., 2007; Trabuco et al., 2009). Flexible
docking can also be achieved by defining hinges between domains
and varying the orientation between them using QDOCK in the SITUS
package. Methods such as molecular dynamics, conjugate-gradient
minimization, and Monte Carlo optimization can be integrated
with different scoring functions in an iterative protocol that com-
bines the strengths of each individual approach (Topf et al., 2008).

The present work implements for the first time a ‘‘geometric
hashing’’ algorithm (Wolfson and Rigoutsos, 1997) termed
BCL::EM-Fit for the task of fitting atomic-detail protein models into
cryoEM densities. Geometric hashing was developed in the robot-
ics field, where feature-recognition and pattern-matching give
computers the ability to connect real life objects to abstract com-
putational representations. This technique is already used in struc-
tural biology to identify similar binding sites in proteins (Shulman-
Peleg et al., 2004). A second step in the BCL::EM-Fit approach in-
volves a Monte Carlo (Metropolis and Ulam, 1949)/Metropolis
(Metropolis et al., 1953) (MCM) small perturbation protocol to re-
fine the initial fits by maximizing the CCC. The time and robustness
of BCL::EM-Fit compares favorably with the widely used Fourier/
real space fitting program ‘‘COLORES’’ in the SITUS package (Wriggers
and Birmanns, 2001). Benchmark results are presented with simu-
lated density, as well as examples that demonstrate fitting with
experimental GroEL density (Stagg et al., 2008) and of adenovirus
capsid protein crystal structures into experimental cryoEM density
maps (Saban et al., 2006).

2. Methods

2.1. Geometric hashing re-casted for searching density maps with
protein structures

The following paragraph gives a general overview of the steps
required before a more detailed description of the present imple-
mentation is given. The basic idea of geometric hashing was devel-

oped for image recognition in robotic applications. Critical points
of a complex image (features) are extracted into a feature cloud.
A large number of possible rotations and translations of this fea-
ture cloud are encoded a priori in a hash map (Wolfson and Rigout-
sos, 1997) which later allows a rapid search for objects within this
image. For BCL::EM-Fit the 3D image will be the cryoEM density
map. The objects to be recognized will be protein structures which
will also be represented as feature clouds. Each combination of a
rotation (three degrees of freedom) and translation (three degrees
of freedom) of the feature cloud is a transformation with six de-
grees of freedom.

The general scheme for generating the geometric hash is to de-
fine many possible transformations for the density map feature
cloud and store these in a memory-efficient, rapidly searchable
hash map. In this process the features are ‘‘quantized’’, i.e. not
the actual position of a feature but only the specific space bin that
contains the feature is stored. This procedure not only saves mem-
ory and accelerates the search, it also limits the search to a finite
(but large) set of all possible transformations. Further it compen-
sates for experimental noise in the density map and protein struc-
ture. In the recognition step this hash map is searched with a
feature cloud representation of the protein to be docked. It is ex-
pected that one of the original transformations puts the feature
cloud of the density map in good overlap with the feature cloud
of the protein. This can be recognized by the number of shared fea-
tures, i.e. features that end up in the same space bin.

This procedure speeds up the search as not the complete image
but only the features deemed important are considered. Further,
not every possible transformation is considered but only a finite
subset. In contrast to robotics the problem of scaling the image is
absent for feature-recognition in a distance invariant cryoEM den-
sity because the units of length in the density map and atomic
models are the same. Further, 3D images have an increased com-
plexity over 2D pictures that a robot usually sees using a single
camera, which changes the protocol slightly compared to plain
2D picture recognition.

2.2. Extraction of feature cloud from density map intensities (Fig. 2a)

The user inputs a density map that will be completely encoded
as a point cloud for rapid fitting. If the user wants to fit into a spe-
cific segment of the density map, it is necessary to extract that
from the original map in a pre-processing step. In order to generate
a representation of the features in the density map two pieces of
information are used (Fig. 2a): the absolute intensity of a voxel
and the intensity difference to its neighboring voxel, a gradient.
The higher the intensity the more likely it is that a structurally
compact region such as a secondary structure element can be
found in the respective position of the density maps. The higher
the intensity gradient the more likely the edge of a secondary
structure element can be found here. Often there is an intensity
drop at the edge of secondary structure elements due to less rigid
amino acid side chain atoms. The edge regions are usually close to
backbone atoms of secondary structure elements and encode most
of the information within the density map. In order to define the
total number of features extracted from a density map Eq. (1)
was derived empirically:

Npoints ¼ NVoxel Atoms �
VVoxel

Maxðp6 d3
fd;VVoxel;q�1

Atoms ProtienÞ
ð1Þ

where NVoxel Atoms, Number of voxels the atoms would occupy when
mapped to grid of the density map; VVoxel, Volume of voxel; p

6 d3
fd,

Volume that one point occupies according to feature distance; VVox,
Volume that one point occupies according to a Voxel’s volume;
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