
Accepted Manuscript

Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa

Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis

PII:	S1055-7903(14)00279-6
DOI:	http://dx.doi.org/10.1016/j.ympev.2014.08.012
Reference:	YMPEV 4996
To appear in:	Molecular Phylogenetics and Evolution
Received Date:	24 January 2014
Revised Date:	2 August 2014
Accepted Date:	11 August 2014

Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, *Molecular Phylogenetics and Evolution* (2014), doi: http://dx.doi.org/10.1016/j.ympev.2014.08.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts
2	(animals, fungi, choanozoans) and Amoebozoa
3	
4	Thomas Cavalier-Smith ¹ , Ema E. Chao ¹ , Elizabeth A. Snell ¹ , Cédric Berney ^{1,2} , Anna Maria
5	Fiore-Donno ^{1,3} , and Rhodri Lewis ¹
6	
7	¹ Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
8	² Present address: Department of Life Sciences, The Natural History Museum, Cromwell Road,
9	London SW7 5BD, UK. ³ Present address: Zoology Institute, Terrestrial Ecology Group, Faculty
10	of Mathematics and Natural Sciences, University of Cologne, Biozentrum Köln, Zülpicher Str. 47
11	b, D-50674 KÖLN, Germany.
12	
13	Author for correspondence: Thomas Cavalier-Smith, email: tom.cavalier-smith@zoo.ox.ac.uk.
14	
15	ABSTRACT
16	Animals and fungi independently evolved from the protozoan phylum Choanozoa, these three
17	groups constituting a major branch of the eukaryotic evolutionary tree known as opisthokonts.
18	Opisthokonts and the protozoan phylum Amoebozoa (amoebae plus slime moulds) were
19	previously argued to have evolved independently from the little-studied, largely flagellate,
20	protozoan phylum, Sulcozoa. Sulcozoa are a likely evolutionary link between opisthokonts and
21	the more primitive excavate flagellates that have ventral feeding grooves and the most primitive
22	known mitochondria. To extend earlier sparse evidence for the ancestral (paraphyletic) nature of
23	Sulcozoa, we sequenced transcriptomes from six gliding flagellates (two apusomonads; three
24	planomonads; Mantamonas). Phylogenetic analyses of 173-192 genes and 73-122 eukaryote-
25	wide taxa show Sulcozoa as deeply paraphyletic, confirming that opisthokonts and Amoebozoa
26	independently evolved from sulcozoans by losing their ancestral ventral groove and dorsal
27	pellicle: Apusozoa (apusomonads plus anaerobic breviate amoebae) are robustly sisters to
28	opisthokonts and probably paraphyletic, breviates diverging before apusomonads; Varisulca
29	(planomonads, Mantamonas, and non-gliding flagellate Collodictyon) are sisters to opisthokonts
30	plus Apusozoa and Amoebozoa, and possibly holophyletic; Glissodiscea (planomonads,
31	Mantamonas) may be holophyletic, but Mantamonas sometimes groups with Collodictyon
32	instead. Taxon and gene sampling slightly affects tree topology; for the closest branches in
33	Sulcozoa and opisthokonts, proportionally reducing missing data eliminates conflicts between
34	homogeneous-model maximum-likelihood trees and evolutionarily more realistic site-
35	heterogeneous trees. Sulcozoa, opisthokonts, and Amoebozoa constitute an often-pseudopodial

Download English Version:

https://daneshyari.com/en/article/5919145

Download Persian Version:

https://daneshyari.com/article/5919145

Daneshyari.com