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a b s t r a c t

With recent advances in genomic sequencing, the importance of taking the effects of the processes that
can cause discord between the speciation history and the individual gene histories into account has
become evident. For multilocus datasets, it is difficult to achieve complete coverage of all sampled loci
across all sample specimens, a problem that also arises when combining incompletely overlapping data-
sets. Here we examine how missing data affects the accuracy of species tree reconstruction. In our study,
10- and 100-locus sequence datasets were simulated under the coalescent model from shallow and deep
speciation histories, and species trees were estimated using the maximum likelihood and Bayesian
frameworks (with STEM and *BEAST, respectively). The accuracy of the estimated species trees was eval-
uated using the symmetric difference and the SPR distance. We examine the effects of sampling more
than one individual per species, as well as the effects of different patterns of missing data (i.e., different
amounts of missing data, which is represented among random taxa as opposed to being concentrated in
specific taxa, as is often the case for empirical studies). Our general conclusion is that the species tree
estimates are remarkably resilient to the effects of missing data. We find that for datasets with more lim-
ited numbers of loci, sampling more than one individual per species has the strongest effect on improving
species tree accuracy when there is missing data, especially at higher degrees of missing data. For larger
multilocus datasets (e.g., 25–100 loci), the amount of missing data has a negligible effect on species tree
reconstruction, even at 50% missing data and a single sampled individual per species.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Traditional single-locus phylogenetic tree inference typically in-
volves consideration of only the mutational process for explaining
the variation seen in the sampled DNA sequences, with the result
that the history of the gene analyzed is assumed to reflect the his-
tory of the species. However, it has long been recognized (Maddi-
son, 1997, and references therein) that other processes influence
sequence variation, and that their effects should be taken into ac-
count when performing phylogenetic analysis of molecular data.
Such processes can create discord between the speciation history
and the trees inferred from the observed gene sequences by mov-
ing genes across species boundaries (horizontal transfer), obscur-
ing the difference between paralogous and orthologous genes
(gene duplication and extinction), and by the retention of ancestral
polymorphisms resulting in a gene genealogy that does not reflect
the speciation history (deep coalescence).

While standard sequencing practices target specific areas of the
genome, next generation sequencing technologies generate ran-
domly sampled sequences from across the genome. Consequently,
datasets collected by such sequencing (e.g., data from the 454-
sequencing and Illumina platforms) will have characteristics that
differ from traditional sequencing datasets (i.e., generated by San-
ger sequencing) from a phylogenetic perspective: they will have
many loci where the gene history is more strongly influenced by
the coalescent than the mutational process (i.e., they have not been
vetted for specific levels of nucleotide variation), and since the
sampling of loci is more or less random for each sampled individ-
ual, there will be a large portion of missing data in the full dataset
when loci are counted as missing/present. This suggests the need
for methods for analyzing multilocus data that take the coalescent
process into account while remaining robust with respect to a large
proportion of missing data.

The coalescent process (Kingman, 1982; Hudson, 1983; Tajima,
1983) is commonly used to model the process of deep coalescence
in phylogenetics to estimate species trees (Knowles and Kubatko,
2010). The coalescent process describes how gene histories are
influenced by historical population size and time intervals between
speciation events: allelic variation is more likely to be retained in a
large population, or across speciation events within short time
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intervals as one allele is less likely to become fixed under those
conditions, increasing the probability of each gene history being af-
fected by deep coalescence. Because the coalescent can be used to
compute the likelihood of observing each gene history given a spe-
cies tree, algorithms can be devised that take the effect of deep
coalescence into account when estimating a phylogeny from a
multilocus dataset.

Methods that explicitly include the coalescent process as part of
the estimation method in a probabilistic framework can be classi-
fied into two groups: those that use sequence data as input, and
those that use estimated gene trees as input. The two popular
methods that take sequence data as input are BEST (Liu and Pearl,
2007; Liu et al., 2008) and *BEAST (Heled and Drummond, 2010).
Both of these methods use a Bayesian framework to estimate the
species trees given a multilocus dataset under the coalescent mod-
el. The most widely used probabilistic method based on gene tree
data as input is STEM (Kubatko et al., 2009), which finds the max-
imum likelihood species tree for the input collection of gene trees
under the coalescent model. The method is based on the Maximum
Tree algorithm (Liu, 2006; Mossel and Roch, 2010; Liu et al.,
2010a,b).

A primary disadvantage of methods like STEM (see also meth-
ods such as MDC (Maddison and Knowles, 2006; Than and Nak-
hleh, 2009, 2010), ST-ABC (Fan and Kubatko, 2011), STAR and
STEAC (Liu et al., 2009) and NJst (Liu and Yu, 2011)) that use gene
trees as input is that variability in the gene trees is not taken into
account (but see Knowles et al., submitted for publication). When
gene trees are assumed to be known, variation in the sequence
data leading to the estimated gene trees is ignored. Several authors
(Huang et al., 2010; Knowles, 2009; Liu et al., 2009; McCormack
et al., 2009; Than and Rosenberg, 2011) have studied the effect
of ignoring this source of variability, and have found that in general
these methods perform well as long as their particular basic
assumptions are not violated. Although methods based on se-
quence data, such as BEST and *BEAST, do not suffer from this
shortcoming, this comes at the expense of increased time required
to carry out the computations. In some cases, convergence is diffi-
cult to achieve and/or the amount of run time required to achieve
convergence in all parameters is prohibitive (e.g., Cranston et al.,
2009; Kubatko et al., 2011). Moreover, the amount of computation
time required for sequence-based methods increases with the
number of sequences included in the analysis, whereas for meth-
ods like STEM that use gene trees as input, the estimate of the spe-
cies tree is returned rapidly, regardless of the size of the sample.

However, of the current software implementations, STEM (Ku-
batko et al., 2009) is the only application that explicitly allows for
missing data. This is made possible in STEM because the Maximum
Tree algorithm (Liu, 2006; Liu et al., 2010a,b) provides an analytical
solution to the problem of finding the ML species tree that is based on
the set of observed coalescent times across gene trees. When a coa-
lescent time is not able to be estimated for a particular gene, as
would be the case for any coalescent event involving a taxon that
does not have a sequence available for the gene under consideration,
that coalescent time simply does not contribute to forming the ML
estimate of the divergence time for that node in the species tree.
Thus missing data can be handled naturally in STEM without invok-
ing any special assumptions, except that missing data are missing at
random (i.e., the fact that the time is missing is independent of the
coalescent time itself, and thus, missing data does not introduce a
bias for the method). Methods based on sequence data, on the other
hand, are expected to be adversely affected by a large proportion of
missing data. At present, neither BEST nor *BEAST explicitly allow
missing data. However, a user could fill an entire locus with the ‘?’
character to reflect missing data for a taxon at that locus, but the
likely result of such a procedure is increased difficulty in achieving
convergence. This would be expected to occur because there will

be no information in the data concerning the placement of such a
taxon in the genealogy.

Here we present a simulation study to examine the effect of
missing data on the performance of species tree inference using
STEM and *BEAST. The aim is to determine how adding more loci,
more coverage or more individuals per species improves the accu-
racy of reconstructing the correct species tree, and how efficient
the method is under a range of parameters such as tree depth,
number of individuals per species, and total number of sampled
loci and individuals. We make general conclusions with regard to
all of these factors for STEM, while examining a subset of our sim-
ulated data using *BEAST.

2. Methods

The workflow for the simulation study can be summarized by
the following steps: (1) generating species trees, (2) generating
gene trees from the species trees under the coalescent, (3) generat-
ing sequence data from the gene trees, (4) estimating maximum
likelihood gene trees from the sequence data, (5) reconstructing
species trees from the estimated gene trees, and (6) comparing
accuracy of the estimated species trees to the trees originally gen-
erated in step 1. Generation of species trees, gene trees and se-
quence data follows the procedure outlined by Huang et al.
(2010), and will be briefly summarized below.

Species trees with eight terminal taxa were generated by Mes-
quite (Maddison and Maddison, 2010) under the Yule process.
These species trees were used as input for generating gene tree
topologies using ms (Hudson, 2002) under a basic coalescent mod-
el that assumes a constant population size, no migration or hori-
zontal transfer, and free recombination between loci. We
considered total sample sizes of 10 and 100 loci. For the 10 locus
datasets, gene trees were generated with 1, 3 or 9 individuals per
species, while for the 100 locus datasets, 1 or 3 individuals per spe-
cies were used. Gene trees were generated under assumed tree
depths of 1N and 10N generations, where N is the effective popu-
lation size.

Sequence data were generated with Seq-Gen (Rambaut and Gras-
sly, 1997) under the HKY85 model (Hasegawa et al., 1985). The fixed
parameters for the sequence generation are the same as those used
in Huang et al. (2010): a transition/transversion ratio of 3.0, gamma
mutation rate shape = 0.8 and a nucleotide frequency distribution of
(pA = 0.3, pC = 0.2, pG = 0.3, pT = 0.2). For each gene tree, 1000 base
pairs were generated for each terminal taxon.

For each dataset, 10%, 25% or 50% of the sequences were re-
moved. The missing data were generated by deleting entire se-
quences at a locus using one of two patterns: ‘bad terminals’ or
random allocation. The ‘bad terminal’ process is intended to simu-
late degraded input material (i.e. specimens with degraded DNA)
as would be expected from historical material, where sequencing
was unsuccessful for several taxa at one or more loci. In this case,
a number of terminal taxa are designated as ‘bad’ following a Pois-
son distribution with k set to half the number of terminal taxa, and
the missing loci are distributed over the ‘bad’ taxa according to a
multinomial distribution with equal probabilities for all categories.
The random allocation of bad loci is equally likely to pick any locus
from any terminal taxon. For the 100 locus datasets, missing data
was only distributed by the random pattern, so as to emulate the
pattern of missing data from next generation sequencing. This
decision also reflects the fact that we observed very little difference
in the two missing-data patterns in the 10-locus datasets (see be-
low for details). We also included a series of simulations for the
random pattern in which 25, 50, 75, or 100 loci were used at both
1N and 10N total tree depths over the range of missing data
percentages.
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