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a  b  s  t  r  a  c  t

Previously  the  stage  of  nucleation  of supercritical  droplets  in the vapor–gas  medium  at  instantaneously
generated  vapor  supersaturation  had been  described  within  the  mean-field,  excluded-volume  and
stochastic  probability  (nearest  neighbor)  approaches  which  are  based  on  different  physical  assumptions.
Here  we  have  formulated  an  extended  excluded-volume  theory  which  reconciles  these  approaches.  The
theory  takes  into  account  the  drop  of  the  nucleation  rate  in  vicinities  of  growing  supercritical  droplets
and  mean-field  mixing  of  vapor concentration  and  temperature  at outer  boundaries  of the  nonstationary
diffusion  shells  around  the droplets  due  to  stochastic  overlapping  of  the  shells.  The  theory  gives  the  dis-
tribution  of  supercritical  droplets  in sizes  and  predicts  the  vapor  concentration  profiles  at  any  moment  of
the nucleation  stage  as  well as  duration  of the  nucleation  stage,  the total  number  of  nucleating  supercrit-
ical  droplets  and  the  mean  droplet  size  to  the  end of  nucleation  stage.  These  characteristics  are  compared
with  the  estimates  obtained  within  the stochastic  probability  (nearest  neighbor)  approach.  A  general-
ization  of the  isothermal  excluded-volume  theory  with  the  overlapping  diffusion  shells  has  been  done
to  include  the  thermal  effects  of  nonisothermal  nucleation  and  the  nonstationary  transfer  of  heat  in the
vapor–gas  medium.  It has  been  shown  that  the mean-field  and  excluded-volume  approaches  lead  to
identical  results  in  the  limit of  small  nonstationarity  of  vapor  diffusion  and  thermal  conductivity.
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1. Introduction

At instant creation of vapor supersaturation in a vapor–gas sys-
tem, the stage of nucleation of supercritical droplets starts after
incubation stage and is very important in the whole nucleation
process since the droplet size-distribution function is formed just
during nucleation stage. The next stage develops as a process of sub-
sequent growth of the supercritical droplets that already appeared
on the nucleation stage. The theory of the nucleation stage had been
initially formulated on the assumption that vapor supersaturation
decreases due to condensation in growing supercritical droplets
uniformly and simultaneously for the whole system [1–5]. Below
we call such theory as the mean-field approach. It had been elabo-
rated for any regime of supercritical droplet growth, from kinetic to
diffusion. For diffusion growth of supercritical droplets, the approx-
imation of the mean-field vapor supersaturation can be strictly
justified if the diffusion vapor shells around growing droplets are
large not only in comparison with the sizes of the droplets them-
selves, but also with respect to the average distance between the
droplets, i.e., if these shells considerably overlap. In the case when
the number of nucleating droplets is small and they grow due
to nonstationary diffusion, the corresponding diffusion shells of
neighbor droplets may  overlap only at the end of the nucleation
stage. Nucleation of new droplets during this stage occurs in the
vapor–gas media with nonuniform vapor supersaturation profiles
around droplets formed earlier. The rate of nucleation of new super-
critical particles is suppressed in spherical diffusion region where
the local vapor supersaturation is depleted by the growing droplet.
Therefore a volume excluded from nucleation is formed around
such droplets. The theory of the nucleation stage based on the con-
cept of the excluded volume had been considered in several forms
[6–14], and we  further call it as the excluded-volume approach.
Another development of the theory which takes into account the
vapor inhomogeneity on the nucleation stage by considering the
stochastic probability for the distance between nearest nucleating
droplets [15] is called below as the nearest-neighbor approach.

In this paper, we develop an extended excluded-volume theory
which reconciles the results of the mean-field, excluded-volume
and nearest-neighbor approaches. First, in Section 2, we  refor-
mulate the basic ideas of the excluded-volume approach in the
case of isothermal formation and condensation in the supercritical
droplets. In Section 3 we consider the main kinetic equation for the
excluded-volume approach with overlapping diffusion shells and
compare the solution of this equation with the solution of equa-
tion for the mean-field vapor supersaturation. In Section 4 we add
an analysis of the ideas of the nearest-neighbor approach. In Sec-
tion 5 we extend the isothermal excluded-volume approach with
the overlapping diffusion shells by taking into account the thermal
effects of nonisothermal nucleation and the nonstationary transfer
of heat in the vapor–gas medium. Finally we summarize the results
of this paper in Section 6.

2. Basics of the excluded-volume approach

Nucleation stage is the first stage in the whole nucleation pro-
cess where the effects of the decrease of the vapor supersaturation
by nucleating and growing droplets of supercritical size become
significant. During preceding incubation stage, a quasi-steady state
for small near-critical droplets and corresponding quasi-steady
nucleation rate are established. On succeeding stage of supersatura-
tion collapse (or droplet growth), the initial vapor supersaturation
drops almost to zero and droplets that appeared on the nucleation
stage grow considerably.

The details of the excluded-volume approach can be found in
[13]. Here we formulate all the basic concepts needed for the

subsequent sections. At nonuniform distribution of vapor concen-
tration n(�r, t) at the point �r and time t and absolute temperature T
in the vapor–gas mixture (temperature T is the same for droplets
and the vapor–gas mixture and does not change under conditions
of isothermal nucleation and condensation), the expression for the
local nucleation rate has the form

I(�, T) = A(�, T) exp(−�F(�, T)). (1)

Here � = �(�r, t) is the current local value of the vapor supersa-
turation, �F(�, T) is the minimal work of critical droplet formation
expressed in terms of thermal units kBT, kB is the Boltzmann
constant, and pre-exponential factor A(�) is a much more slowly
varying function of vapor supersaturation to compare with the
exponential factor exp(− �F(�, T)). The work �F(�, T) can be written
in the classical nucleation theory as

�F(�, T) = 4
27

(
4��(T)
kBT

)3( 3
4�nl(T)
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where �(T) is the droplet surface tension and nl(T) is the number
density of molecules in the liquid phase.

With ignoring a change in the pre-exponential factor A(�, T) in
expression (1), the local nucleation rate I = I(�, T) at time moment t
and initial nucleation rate I0 = I(�0, T) at moment t = 0 are related as

I(�, T) ≈ I0 exp[−(�F(�, T) − �F(�0, T))] (3)

where initial �0 and current � values of the vapor supersaturation
are defined by expressions

�0 ≡ n0 − n∞(T)
n∞(T)

, �(�r, t) ≡ n(�r, t) − n∞(T)
n∞(T)

. (4)

Here n0 is the initial value of vapor concentration and n∞(T) is
the equilibrium concentration of the vapor over a planar surface of
its liquid phase at temperature T.

The excluded-from-nucleation volume Vex(t) of the vapor–gas
medium around the growing supercritical droplet of radius R(t)
can be determined [6,9,13] from a special integral condition. This
condition requires that the total number of new droplets, nucleat-
ing per unit time in a sufficiently large volume V of the vapor–gas
medium around this particular particle at the current profile of
vapor supersaturation �(�r, t) and the corresponding profile I = I(�,
T) of nucleation rate, equals the number of droplets nucleated with
the initial nucleation rate I0 = I(�0, T) outside the excluded volume,
i.e.,∫
V

d�rI(�(�r, t), T) = I0(V − Vex(t)). (5)

For a single spherical droplet located at the center of the coor-
dinate system, we find from Eq. (5)

Vex(t) = 4�

∫ ∞

R(t)

I0 − I(�(r, t), T)
I0

r2dr, (6)

where upper limit of integral has been replaced by infinity since
the integrand goes sufficiently fast to zero with increase of
argument r.

Applying the results of Refs. [13,16,17], where the growth of
single droplet was  described on the base of nonstationary diffu-
sion equation with convection term arising from the motion of
vapor–gas mixture due to the movement of the surface of growing
droplet, we  get the following self-similar expression for the field of
vapor concentration around the droplet with radius R(t)
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