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a  b  s  t  r  a  c  t

In this  manuscript  we introduce  algorithms  based  on  the  pattern  search  method  that  are  used to  estimate
equilibrium  surface  tension  and  surfactant  transport  parameters  from  pendant  drops.  The  pattern  search
method  is an  efficient  minimization  technique  for estimating  multiple  unknown  parameters.  To  introduce
and  validate  the  method  for measuring  surface  tension  and  transport  parameters  we use  axisymmetric
drop  shape  analysis  (ADSA)  for pendant  drops  of aqueous  sodium  oleate  (SO)  and  aqueous  sodium  dodecyl
sulfate  (SDS)  in  mineral  oil,  along  with  several  other  classical  data  sets  from  the  literature.  The  data  show
good agreement  with  other  studies  suggesting  that  the  pattern  search  method  may  be  a robust  alternative
to  gradient  based  search  methods.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In this manuscript we outline a process to apply pattern search
methods to estimate equilibrium surface tension and surfactant
transport parameters from pendant drops. The technique may  be
extended to other systems where robust minimization or search
methods are required to estimate multiple unknown parameters.
There are unique advantages with utilizing this technique to
estimate properties of surfactant systems where minimization
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occurs between a known (experimental drop shapes or surface
tension data) and unknown (Young–Laplace solution or isotherms)
set of data, of which pendant drop analysis is an example. The main
advantage stems from the fact that estimates for the unknown
properties are produced by minimizing the common �2-norm
between the known and unknown data sets which can be used to
formulate an objective function used for minimization. To validate
the technique for measuring surface tension we consider pendant
drops of aqueous sodium oleate (SO) and aqueous sodium dodecyl
sulfate (SDS) in mineral oil, along with several other classical data
sets from the literature. This will be followed by implementation
of the pattern search method to fit the equilibrium surface tension
data to the Frumkin isotherm which requires the simultaneous
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minimization of three unknown parameters used to quantify
surfactant transport.

The analysis begins with estimates of surface tension data. To
generate surface tension data an axisymmetric drop shape anal-
ysis (ADSA) for pendant drops will be considered. This generally
consists of fitting drop shapes prescribed by the Young–Laplace
equation to experimentally measured drop shapes. There are two
unknown parameters in the ADSA process: the surface tension
and the curvature. Constructing the objective function is the most
robust method for determining the best fit using ADSA. But it is
also the most costly since the numerically generated solution to the
Young–Laplace equation requires solving differential equations in
multiple dimensions. Furthermore, the range of surface tension and
curvature values must be bounded in order to determine the region
where the minimum exists along with choosing an appropriate size
for incrementing the independent variables.

Within the past few decades gradient-based solvers have been
developed to perform the ADSA minimization process. The most
common example of such a method is through implementation
of the well-known Newton–Raphson scheme [1]. To perform the
analysis the objective function is expanded in a Taylor series
about the unknown parameters. Unfortunately gradient-based
solvers too are computationally intensive, requiring the additional
calculation of gradients to update the unknown in the iterative
process. Additionally gradient-based solvers are not guaranteed to
converge and tend to diverge if the initial guess is not sufficiently
close to the best fit.

Instead we apply a pattern search method for determining best
fits of the Young–Laplace equation. The pattern search method is an
example of a direct search method which is more commonly used
for performing modern error minimization. Direct search meth-
ods are less computational expensive than gradient based methods
because they typically do not require any additional mathematical
manipulation of an objective function. Drawbacks in utilizing these
methods exist because they are not necessarily robust in terms of
convergence to a local minimum. An example of a direct method is
the Nelder–Mead simplex method [2,3], generally recognized as the
first non-gradient based search method. With this method, mini-
mization is achieved by reaching the local minimum in a region
usually defined by some p + 1 points where p is the number of
unknowns, or dimensions. Points are updated by determining min-
ima  at points reflected through the line formed at the other p points.
This method has been used in [4] where the MATLAB function fmin-
search was used to perform the implementation with good results.
Although the Nelder–Mead simplex method is capable of produc-
ing good results there are no guarantees that it converges to a local
minimum.

On the other hand, the pattern search method has been shown
through robust mathematical analysis to consistently converge to
a local minimum the details of which were described in [5,6]. A
brief analysis of why the pattern search method converges is as
follows: an objective function based on the �2-norm in multiple
dimensions can possess a local minimum because the distance
measured between the computational and experimental data di is
squared. For example, in one dimension let the distance between
a point generated numerically by the Young–Laplace equation and
one measured experimentally be a function of only the surface ten-
sion and be denoted di(�n). Now bound di(�n) above and below by
adding and subtracting some small-equidistant amount ı, respec-
tively, from the unknown quantity �n. Then the error at step n

is bounded by �n ± ı, i.e.
√
di(�n)2 <

√
di(�n ± ı)2. This condition

forms the basis for the pattern search algorithm. We  will explore
how to implement this method, and discuss situations where the
condition may  break down in regards to determining equilibrium
surface tension and surfactant transport parameters, in the follow-
ing sections.

2. Pattern search algorithm

2.1. General pattern search algorithm

We  begin a discussion of the general pattern search algorithm
that may  be used to generate simultaneous estimates for multi-
ple unknown parameters. The pattern search technique relies on
the existence of a local minimum in an objective function for a
set of unknown quantities. We  will show that objective function
estimates using an �2-norm are sufficient to satisfy this criteria
for determining equilibrium surface tension and surfactant trans-
port parameters under certain conditions. The �2-norm has been a
standard for automated calculation of surface tension [1] and errors
estimated using the �2-norm can be generalized to any type of curve
fitting method. The �2-norm is simply defined by the Euclidean
distance

 (c1,n, c2,n, . . .,  cp,n) =

√√√√ I∑
i=1

di(c1,n, c2,n, . . .,  cp,n)2, (1)

where  (c1,n, c2,n, . . .,  cp,n) is the objective function of p unknowns
c1,n, c2,n, . . .,  cp,n which also serve to denote coordinates (c1,n, c2,n,
. . .,  cp,n). The variable di is used to denote the distance measured
between I points of some numerically generated and experimen-
tally generated data sets at specific positions i along an axis of the
independent variable at minimization step n.

The general algorithm goes as follows: starting with initial
guesses for the coordinates (c1,0, c2,0, . . .,  cp,0), we update these
points to find a trajectory that leads to the local error minimum.
For the pattern search algorithm this is achieved without the use
of calculating gradients by determining the minimum in the set,

A = { (c1,n + L1�c1,n, c2,n + L1�c2,n, . . .,  cp,n + L1�cp,n),

 (c1,n + L2�c1,n, c2,n + L1�c2,n, . . ., cp,n + L1�cp,n),

. . .

 (c1,n + L3�c1,n, c2,n + L3�c2,n, . . ., cp,n + L3�cp,n)},

(2)

where [L1, L2, L3] = [−1, 0, 1]. There are 3p elements in set A if one
includes the initial coordinates at each minimization step (c1,n,
c2,n, . . .,  cp,n). Let ˇ1, ˇ2, . . .,  ˇp = 1, 2 or 3 be used to denote
the indices Lˇ1

, Lˇ2
, . . .,  Lˇp corresponding to the objective func-

tion minimum at step n in set A located at coordinates (c1,n +
Lˇ1
�c1,n, c2,n + Lˇ2

�c2,n, . . .,  cp,n + Lˇp�cp,n). If the elements of
the vector M = (M1, M2, . . .,  Mp) = (Lˇ1

, Lˇ2
, . . .,  Lˇp ) contain these

values then new guesses at step n + 1 for the unknowns can be
written as⎡
⎢⎢⎢⎣
c1,n+1

c2,n+1

. . .

cp,n+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
c1,n

c2,n

. . .

cp,n

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
M1�c1,n+1

M2�c2,n+1

. . .

Mp�cp,n+1

⎤
⎥⎥⎥⎦ . (3)

The step sizes �c1,n+1, �c2,n+1, . . .,  �cp,n+1 remain con-
stant until the minimum of set A produces the zero vector,
i.e. ˇ1 = ˇ2 = · · · = ˇp = 2 such that M = 0. If this occurs then the
step size is uniformly reduced by �, i.e. �c1,n+1, �c2,n+1,
. . .,  �cp,n+1 = ��c1,n+1, ��c2,n+1, . . .,  ��cp,n+1 with 0 < � < 1 and
the procedure continues. The iterative process is completed
when one or several of the unknowns meet a user defined
minimum error requirement between two  consecutive steps
|c1,n+1 − c1,n| or |c2,n+1 − c2,n| or . . . or |cp,n+1 − cp,n| � 1.
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