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introduce Gibbs distribution in a general setting, including non stationary dynamics, and present then
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(i) maximum entropy model with spatio-temporal constraints; (ii) generalized linear models; and
(iii) conductance based integrate and fire model with chemical synapses and gap junctions.
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1. Introduction

Neurons communicate among them by generating action
potentials or “spikes” which are pulses of electrical activity. When
submitted to external stimuli, sensory neurons produce sequences
of spikes or “spike trains” constituting a collective response and a
dynamical way to encode information about those stimuli. How-
ever, neural responses are typically not exactly reproducible, even
for repeated presentation of a fixed stimulus. Therefore, character-
izing the relationship between sensory stimuli and neural spike re-
sponses can be framed as a problem of determining the most
adequate probability distribution relating a stimulus to its neural
response. There exist several attempts to infer this probability
from data and/or general principles, based on Poisson or more gen-
eral point processes (Ahmadian et al., 2011; Vere-Jones and Daley,
2003; Miller and Snyder, 1991), Bayesian approaches (Koyama
et al,, 2010; Gerwinn et al., 2009), maximum entropy (Schneidman
et al., 2006; Vasquez et al., 2012) (for a review see Rieke et al.,
1996). In this paper we present several situations where the notion
of Gibbs distributions is appropriate to address this problem.

The concept of Gibbs distribution comes from statistical physics.
We use it here in a more general sense than the one usually taught in
standard physics courses, although it is part of mathematical statis-
tical physics (Georgii, 1988). We argue here that Gibbs distributions
might be canonical models for spike train statistics analysis. This
statement is based on three prominent examples.

1. The so-called Maximum Entropy Principle allows one to pro-
pose spike train statistics models considering restrictions
based on empirical observations. Although this approach
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has been initially devoted to show the role of weak instanta-
neous pairwise correlations in the retina (Schneidman et al.,
2006), it has been recently applied to investigate the role of
more complex events such as instantaneous triplets (Gan-
mor et al.,, 2011) or spatio-temporal events (Vasquez et al.,
2012). Probability distributions arising from the maximum
entropy principle are Gibbs distributions.

2. Other approaches such as the Linear-Nonlinear (LN) or
Generalized Linear Models (GLMs) propose an ad hoc form
for the conditional probability that a neuron fires given the
past network activity and given the stimulus. Those models
have been proven quite efficient for retina spike trains anal-
ysis (Pillow et al., 2011). They are not limited by the con-
straint of stationarity, but they are based on a
questionable assumption of conditional independence
between neurons. As we show, the probability distributions
coming out from those models are also Gibbs distributions.

3. Recent investigations on neural networks models (conduc-
tance based integrate-and-fire (IF) with chemical and elec-
tric synapses) show that statistics of spike trains generated
by these models are Gibbs distributions reducing to 1 when
dynamics is stationary, and reducing to 2 in specific cases
(Cessac, 2011a,b; Cofré and Cessac, in press). In the general
case, the spike trains produced by these models have Gibbs
distributions which neither match 1 nor 2.

The paper is organized as follows. After some definitions
regarding spike train statistics and a presentation of Gibbs distri-
butions we develop these three examples, with a short discussion
of their advantages and drawbacks in spike trains analysis. Then,
we discuss some relations between these models, mainly based
on the Hammersley-Clifford theorem (Hammersley and Clifford,
unpublished; Besag, 1974; Moussouris, 1974; Clifford, 1990). This
paper is a summary of several papers written by the authors and


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jphysparis.2013.03.001&domain=pdf
http://dx.doi.org/10.1016/j.jphysparis.2013.03.001
mailto:bruno.cessac@inria.fr
mailto:rodrigo.cofre_torres@inria.fr
http://dx.doi.org/10.1016/j.jphysparis.2013.03.001
http://www.sciencedirect.com/science/journal/09284257
http://www.elsevier.com/locate/jphysparis

B. Cessac, R. Cofré/Journal of Physiology - Paris 107 (2013) 360-368 361

other collaborators (Cessac, 2011a,b; Nasser et al., 2013; Cessac
and Palacios, 2012; Cofré and Cessac, in press). As such it does
not contain original material (except the presentation).

2. Definitions
2.1. Spike trains

We consider a network of N neurons. We assume that there is a
minimal time scale § > 0 corresponding to the minimal resolution
of the spike time, constrained by biophysics and by measurements
methods (typically 6 ~1 ms) (Cessac and Viéville, 2008; Cessac
et al.,, 2010). Without loss of generality (change of time units) we
set 6 =1, so that spikes are recorded at integer times. One then
associates to each neuron k and each integer time n a variable
wi(n) =1 if neuron k fires at time n and wy(n) = 0 otherwise. A spik-
ing pattern is a vector w(n) déf[wk(n)]ﬁ:] which tells us which neu-
rons are firing at time n. We note A = {0,1}" the set of spiking
patterns. A spike block is a finite ordered list of spiking patterns,
written:

wgf = {w(n)}{m <n<my )y

where spike times have been prescribed between the times n; to
n, (i.e., n; — ny +1 time steps). The range of a block is n, — ny +1,
the number of time steps from n; to n,. The set of such blocks
is A™ ™*1 Thus, there are 2" possible blocks with N neurons
and range n. We call a raster plot a bi-infinite sequence
a)d:Ef{a)(n) +e .. of spiking patterns. Obviously experimental ras-
ters are finite, but the consideration of infinite sequences is more
convenient mathematically. The set of raster plots is denoted

Q=A%
2.2. Transition probabilities

The probability that a neuron emits a spike at some time n de-
pends on the history of the neural network. However, it is impos-
sible to know explicitly its form in the general case since it depends
on the past evolution of all variables determining the neural net-
work state. A possible simplification is to consider that this proba-
bility depends only on the spikes emitted in the past by the
network. In this way, we are seeking a family of transition proba-
bilities of the form P, [w(n)|w}-}], the probability that the firing
pattern w(n) occurs at time n, given a past spiking sequence
o?-}. Here, D is the memory depth of the probability, i.e., how far
in the past does the transition probability depend on the past spike
sequence. We use the convention that P, [w(n)|wi-}] = Paw(n)] if
D = 0 (memory-less case).

The index n of P,[.|.] indicates that transition probabilities de-
pend explicitly on the time n. We say that those transition proba-
bilities are time-translation invariant or stationary if for all
n, Py[om)|wiZ}] = Pp[w(D)|w)~] whenever w'-} =wj! (ie.
the probability does not depend explicitly on time). In this case
we drop the index n.

Transition probabilities depend on the neural network charac-
teristics such as neurons conductances, synaptic responses or
external currents. They give information about the dynamics that
takes place in the observed neural network. Especially, they have
a causal structure where the probability of an event depends on
the past. This reflects underlying biophysical mechanisms in the
neural network, which are also causal.

2.3. Gibbs distribution

We define here Gibbs distributions (or Gibbs measures) in a
more general setting that the one usually taught in statistical

physics courses, where Gibbs distributions are considered in the
realm of stationary process and maximum entropy principle. Here,
we do not assume stationarity and the definition encompasses the
maximum entropy distributions. The Gibbs distributions consid-
ered here are called chains with complete connections in the realm
of stochastic processes (Fernandez and Maillard, 2005; Maillard,
2007) and g-measures in ergodic theory (Keane, 1972). They are
also studied in mathematical statistical physics (Georgii, 1988).

2.3.1. Continuity with respect to a raster

For n € 7, we note A" the set of sequences w"_!. Assume that
we are given a set of transitions probabilities, like in the previous
section, possibly depending on an infinite past!, i.e. of the form
Pa [o0(n)|w";!]. We give in Section 3.3 an example of neural network
model where such transition probabilities with an infinite memory do
occur.

Even if transition probabilities involve an infinite memory ™!,
it is reasonable to consider situations where the effects of past
spikes decreases exponentially with their distance in the past. This
corresponds to the mathematical notion of continuity with respect
to a raster. We note, for n € Z, m > 0, and r integer:

oo if of)=wr),Yre{n-m,... n}

Consider a function f depending both on discrete time n and on
the raster part of w anterior to n. We write f(n,w) instead of
f(n,@™!). The function f is continuous with respect to the raster w
if its m-variation:

varm, [f(n7 )} = sup{Lf(n, (,U) _f(n7 CO’)| : wn;nw/h (1)

tends to 0 as m — + co. This precisely means that the effect, on the
value of f at time n, as this change is more distant in the past.

2.3.2. Gibbs distribution

Definition 2.1. A Gibbs distribution is a probability measure u:
Q — [0,1] such that:

(i) For all n € 7 and all F.,-measurable functions f:

[forudo) = [ 5 forlom)e oo udo)

(ii) Vn e Z, Yol € A", Py[w(n)|w"}] > 0.

(iii) For each n € 7, P,[w(n)|w"}!] is continuous with respect
to w.

The condition (i) is a natural extension of the condition defining
the invariant probability of an homogeneous Markov chain (see Eq.
(2) next section). In its most general sense (i) does not require sta-
tionarity and affords the consideration of an infinite memory. It de-
fines so-called compatibility conditions. They state that the average
of a function f(n,w) with respect to y, at time n (left hand side), is
equal to the average computed from transition probabilities (right
hand side). This equality must hold for any time n.

There exist several theorems guaranteeing the existence and
uniqueness of a Gibbs distribution (Georgii, 1988; Fernandez and
Maillard, 2005): this holds if the variation of transition probability
decays sufficiently fast with time (typically exponentially) as
n—m-— —oo.

! In this case, one has to assume that (i) for every w(n) € A, Palo(n)|] is
measurable with respect to F., ;, the sigma-algebra on A’l;l; (ii) for every
o e AN LY meaPa[om)|o™ 1] = 1.
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