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a b s t r a c t

During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by
blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source),
the visual system is most often able to maintain a continuous representation of motion. For instance, it
maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the
existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this
paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank
using motion-based prediction. This implies that using a prior on the coherency of motion, the system
may integrate previous motion information even in the absence of a stimulus. In order to compare with
experimental results, we simulated tracking velocity responses. We found that the response of the
motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly
recovers the information on the trajectory after reappearance. This is compatible with behavioral and
neural observations on motion extrapolation. To understand these mechanisms, we have recorded the
response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at
the global level as a gain control mechanism and that we could switch from a smooth regime to a binary
tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing
motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more
global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a cer-
tain value, where motion coherency and predictability fail to hold longer. In particular, we found that
motion-based prediction leads to the emergence of a tracking behavior only when enough information
from the trajectory has been accumulated. Then, during tracking, trajectory estimation is robust to blanks
even in the presence of relatively high levels of noise. Moreover, we found that tracking is necessary for
motion extrapolation, this calls for further experimental work exploring the role of noise in motion
extrapolation.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Problem statement

The continuous flow of information originating from the visual
world is constantly fragmented by different sources of noise, occlu-
sions or blanks. For instance, the path of a moving object can often be
transiently blocked from the observer’s line of sight. However, one is
still able to judge the current position of a moving object during such
periods of occlusion as well as estimate its future trajectory at its
reappearance. This ability to transform such fragmented sensory in-
puts into a correct continuous representation has been a major pres-
sure in the evolution of visual systems because it leads to
appropriate reactions matched to the physical evidences: It is vital
to accurately follow the trajectory of a fleeing prey and stabilize its
image onto the retina in order to catch it or, on the contrary, to es-
cape from an approaching predator, despite the fact that it can tran-
siently disappear from the line of sight (Gollisch and Meister, 2010).
The problem of motion occlusion is a particular case of a more gen-
eral problem in neuroscience: motion extrapolation. In the absence of
sensory input, the visual system can extrapolate the instantaneous
position of a moving object from its past trajectory.

An essential clue to solve that problem is the prior knowledge
that objects follow smooth, coherent trajectories. Following the
first law of newtonian mechanics, the trajectory of an object is only
perturbed by external forces. Since we know a priori that these
forces are more likely to be small compared to the inertia of an ob-
ject of relevance, the trajectory of objects in the physical world
tend to follow smooth, straight trajectories. As such, the projection
of these trajectories on the retinotopic space is such that the
statistics of natural images also exhibit similar regularities regard-
ing their visual trajectories. Such prior knowledge may be the basis
of learning processes based on the prediction of the path of the tra-
jectory. During transient blanking, it is most likely that such pro-
cesses (along with the knowledge that the sensory input was
indeed blanked and not definitively removed) are at the root of
the mechanisms underlying motion extrapolation. Their behavioral
consequences are well known. For instance, when a moving target
disappears, smooth pursuit eye movements continue at the same
velocity during the initial period of occlusion (Bennett and Barnes,
2003) and such a feat is only possible when observers have some
knowledge on the path of motion (Graf et al., 2003). Therefore,
there must be some underlying neural computations but it is yet
not clear how this can be done efficiently and where it is imple-
mented in the visual system.

This perceptual phenomenon provides invaluable tools with
which we may study the mechanisms of motion detection and
draw inferences about the properties of underlying neural popula-
tions. First, it is involved in different sensory modalities as sensory
fragmentation exists in vision but also for instance in haptic tasks
(hence in the somatosensory system). Second, it is a powerful
mean to distinguish between the different computational steps of
the visual motion system. Object motion information is extracted
along a cascade of feedforward cortical areas, where area V1 ex-

tracts local motion information that is integrated in extra-striate
middle temporal (MT) and medial superior temporal (MST) areas.

The middle temporal (MT) and medial superior temporal (MST)
areas in the superior temporal sulcus (STS) process visual motion
and oculomotor signals driving pursuit (see (Ilg, 1997) for a re-
view) and are therefore key elements in motion extrapolation.
Early physiological studies in macaque monkey identified area
MT as a specialized module for visual motion processing (Allman
et al., 1973; Dubner and Zeki, 1971). This involves extracting the
speed and direction of the moving object. MT neurons respond
selectively to visual motion and tuned for local speed and direction
of luminance features moving in their receptive fields (Maunsell
and Van Essen, 1983). Pack and Born (2001) have shown that the
temporal dynamics of motion integration can be seen from time-
varying firing rates. They showed that neuronal responses quickly
progress from local to global motion direction in about 100 ms sug-
gesting that such mechanisms are dynamical and progressive.
These results pinpoint the key role of MT neurons in local motion
analysis as well as global motion integration. However, these neu-
rons respond only when the retinal image motion is present while
MST neurons maintain their firing activity when there is no retinal
image motion as during a transient image occlusion (Newsome and
Paré, 1988) or during tracking imaginary target covering the visual
field outside of the receptive field currently recorded (Ilg and Thier,
2003). Similar sustained activity during target occlusion has been
found in monkey posterior parietal cortex, and it is linked to an im-
age motion prior to target disappearance (Assad and Maunsell,
1995). In another study (Schwartz and Berry, 2008) have stimu-
lated the retina of tiger salamander with a periodically flashing
stimulus and have found various firing patterns when a flash is
omitted. This sustained activity is known as ‘‘omitted stimulus re-
sponse’’ (OSR) and is explained by a model based on tunable oscil-
lators which extrapolate the response to the periodic stimulation
even at times matched to the missing stimulus. OSR has also been
reported in the flicker electroretinogram (ERG) of the human cone
system (McAnany and Alexander, 2009).

What is the link between behavioral and neuronal signatures of
motion extrapolation? Visual motion information is primarily used
for gaze stabilization (Ilg, 1997; Kawano, 1999; Masson et al.,
2010) and sensorimotor transformation underlying smooth pursuit
eye movements (Lisberger et al., 1987). The fact that sustained
activity in area MST was seen during transient occlusion of a mov-
ing target supports the notion that the two phenomena are closely
related (Newsome and Paré, 1988). On the other hand, since mo-
tion extrapolation is also seen in lower level neuronal structures,
such as the retina, this calls for a more generic computational
framework. Since motion extrapolation is implemented at the scale
of a single cortical area, this would suggest that such a mechanism
would be implemented by a finely structured set of diffusive mech-
anisms. A potential candidate is naturally the dense network of lat-
eral interactions as found in sub-cortical and cortical structures
involved in sensory processing as well as sensorimotor control.
However, direct evidence for such neural mechanisms is still lack-
ing. Before proposing a solution using motion-based prediction, we
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