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a b s t r a c t

Brain–machine interfaces (BMIs) open new horizons for the treatment of paralyzed persons, giving hope
for the artificial restoration of lost physiological functions. Whereas BMI development has mainly focused
on motor rehabilitation, recent studies have suggested that higher cognitive functions can also be deci-
phered from brain activity, bypassing low level planning and execution functions, and replacing them by
computer-controlled effectors. This review describes the new generation of cognitive-motor BMIs, focus-
ing on three BMI types:

1. Speech BMI – reconstructing a person’s speech based on the neuronal activity.
2. Direct object control – controlling object movement without mimicking the limb movement that

would yield the desired object movement.
3. Decoding internal processes, such as neuronal representations of sensory information and decision

making.

By outlining recent progress in developing these BMI types, we aim to provide a unified view of con-
temporary research towards the replacement of behavioral outputs of cognitive processes by direct inter-
action with the brain.

� 2014 Published by Elsevier Ltd.

1. Introduction

Brain–machine interfaces (BMIs) are machines that can decode
physiological signals from the brain and convert them into actions
in a manner that reflects the brain’s intention (Schwartz, 2004; Bir-
baumer, 2006; Leuthardt et al., 2006; Moran, 2010). So far, the vast
majority of BMI research has focused on the restoration of move-
ment functionality, bypassing paralyzed limbs, and replacing them
with external effector such as robotic arms. However, a completely
paralyzed person misses other functions as well, like the ability to
speak for example, and their restoration can provide tremendous

improvement in the patient’s ability to communicate with their
surroundings.

To undertake these challenges, the realm of brain–machine
interfaces may be expanded by using signals recorded from various
systems that were traditionally outside the central focus of the BMI
field, including higher cognitive processes like working memory,
attention, and mental processing networks (Jerbi et al., 2009).
These processes, however, incorporate abilities unique to human
beings, and therefore research results cannot generally be pro-
jected from nonhuman animals to the human, as is common in
the motor literature (Georgopoulos et al., 1986; Taylor et al.,
2002; Carmena et al., 2003; Paninski et al., 2004; Shoham et al.,
2005). Thus, crucial data and insights into aspects of human cogni-
tion that may be harnessed for brain–machine interface research
and applications relies on the rare opportunities to record in awake
humans the intracortical electrical activity of single cells, and of
small or large cellular assemblies; previously, such unique clinical
opportunities were used to develop a basic-science understanding
of neuronal encoding underlying human perception (Mukamel and
Fried, 2012). Although these studies are typically performed with
able-bodied subjects suffering from intractable epilepsy, move-
ment or affective disorders, there are good reasons to expect that
the observed neural encoding will share essential features with

0928-4257/$ - see front matter � 2014 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.jphysparis.2013.05.005

Abbreviations: BMI, brain–machine interface; M1, primary motor cortex; PRR,
parietal reach region; rAC/MOF, rostral anterior cingulate and adjacent medial
orbitofrontal cortex; STG, superior temporal gyrus; V1, V2, V3, V3A, V3B, V4, areas
of the visual cortex; EEG, electroencephalography; ECoG, electrocorticography;
fMRI, functional magnetic resonance imaging; LFP, local field potential; FDA,
flexible discriminant analysis; LDA, linear discriminant analysis; SVM, support
vector machine.
⇑ Corresponding author. Address: Department of Biomedical Engineering, Tech-

nion – Israel Institute of Technology, Haifa 32000, Israel. Tel.: +972 (4)8294125; fax:
+972 (4)8294599.

E-mail addresses: arielta@gmail.com (A. Tankus), ifried@mednet.ucla.edu (I.
Fried), sshoham@bm.technion.ac.il (S. Shoham).

Journal of Physiology - Paris 108 (2014) 38–44

Contents lists available at SciVerse ScienceDirect

Journal of Physiology - Paris

journal homepage: www.elsevier .com/locate / jphyspar is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jphysparis.2013.05.005&domain=pdf
http://dx.doi.org/10.1016/j.jphysparis.2013.05.005
mailto:arielta@gmail.com
mailto:ifried@mednet.ucla.edu
mailto:sshoham@bm.technion.ac.il
http://dx.doi.org/10.1016/j.jphysparis.2013.05.005
http://www.sciencedirect.com/science/journal/09284257
http://www.elsevier.com/locate/jphysparis


volitional activations in paralyzed subjects (Shoham et al., 2001;
Kokotilo et al., 2009).

This review focuses on the encoding and decoding of the activ-
ity of neuronal ensembles during processes which are on the bor-
der between cognitive processes (Andersen et al., 2010; Zander and
Kothe, 2011) and motor processes (Hatsopoulos and Donoghue,
2009), and specifically, on the motor expressions of cognitive pro-
cesses. We note that although functional magnetic resonance
imaging (fMRI) can also provide important insights into the neuro-
nal organization of these and related processes, and also has been
used for internal process-decoding, it is left mostly outside the
scope of this review, primarily because it only provides a very indi-
rect measure of neuronal encoding and is impractical for a real-life
BMI.

2. Speech brain–machine interfaces

Speech is perhaps the clearest example of a combination of cog-
nitive and motor processes. Restoring the ability to (artificially)
communicate again is a natural way for allowing paralyzed indi-
viduals to express their high level thoughts directly to other peo-
ple, and can greatly improve the quality of life of ALS patients
during the late stages of the disease. Indeed, much of BMI work
has attempted to address this need indirectly: first by translating
motor cortical volitions into binary commands (in the first BMI im-
planted in the human brain, (Kennedy and Bakay, 1998)) and later
on using spelling devices for expressing thoughts in writing, typi-
cally controlled using a moving cursor (Birbaumer et al., 1999;
Kennedy et al., 2000). Spelling devices can either be controlled
noninvasively using either electroencephalography (EEG) (Birbau-
mer et al., 1999; Guger et al., 2009; Ryan et al., 2011), or fMRI (Sor-
ger et al., 2012) or invasively, by using electrocorticography
(ECoG), e.g., (Krusienski and Shih, 2011) or microelectrodes (Ken-
nedy et al., 2000), see review in (Cecotti, 2011).

A more direct and probably much more natural and intuitive
BMI strategy that has only recently been pursued and demon-
strated is to directly decode speech and/or speech intentions from
speech-related neural activity (for review see: (Brumberg and
Guenther, 2010; Brumberg et al., 2010; Pei et al., 2012). Although
the brain areas most commonly associated with speech-production
are Broca’s and face motor cortex areas, speech production in-
volves a much larger network as described by multiple imaging, le-
sion and stimulation studies (Mohr, 1976; Ojemann and Mateer,
1979; Ghosh et al., 2008; Sahin et al., 2009; Hickok and Poeppel,
2007; Hickok, 2009; Hickok et al., 2011). The speech production
network includes areas in charge of speech comprehension, for
example, the bilateral superior temporal gyri (STG), inferior tem-
poral cortex, left angular gyrus, pars orbitalis, and the bilateral
superior temporal sulci (Price, 2010). The transition from percepts
to actual motor output involves word retrieval (left middle frontal
cortex) and articulatory planning (left anterior insula), with initia-
tion and execution of speech controlled by the left putamen, pre-
supplementary motor area (pre-SMA), SMA, and motor cortex
(Price, 2010). When no actual motor output is produced, i.e. artic-
ulatory imagery, auditory-like responses still occur in auditory cor-
tex, suggesting efference copies still predict the auditory outcome
of imagined articulation (Tian & Poeppel, 2010). Imaging studies
showed that both the rostral anterior cingulate cortex (Sahin
et al., 2009; Paus et al., 1993) and the STG (Buchsbaum et al.,
2001; Peeva et al., 2010) also participate in the basic control of
speech production, while the medial-frontal orbitofrontal cortex
is involved in speech comprehension (Sabri et al., 2008) and read-
ing (Kujala et al., 2007). Anterior cingulate cortex is more active for
speech than non-speech vocalization (Chang et al., 2009), and par-
ticipates in speech motor control in both human (Wise et al., 1999;

Sörös et al., 2006) and monkey’s vocalizations (Paus, 2001).
Speech-related neural activity was characterized most carefully
in Broca’s area, the region most intimately linked to speech pro-
duction and its loss in expressive (Broca’s) aphasias, and where hu-
man studies have been used to characterize the temporal dynamics
of speech-related local field potentials (Halgren et al., 1994; Sahin
et al., 2009). Much less is known about the encoding of speech pro-
duction at the single unit level. In a classical study, Ojemann et al.
(1988) identified units in STG and adjacent superior margin of the
middle temporal gyrus whose activity modulated with overt
speech, supporting the area role in the motor aspects of speech, al-
ready inferred from the location of lesions producing permanent
motor aphasias (Mohr, 1976).

As is usual in the BMI field, ECoG, local field potentials or single
unit activity may be employed as signal sources. Although some
studies show better performance when employing local field
potentials or multiunit activity in comparison with spikes (for
example: (Stark and Abeles, 2007)), most studies in the field pre-
sume that utilizing the information encoded by populations of sin-
gle neurons can lead in principle to interfaces with higher
information density. The first speech BMI was demonstrated in a
paralyzed patient with a neurotrophic microelectrode in his pre-
central gyrus (Guenther et al., 2009). A Kalman filter-based deco-
der was trained to predict, from unit firing rates, the intended
formant frequencies, which are the spectral peaks of the spectrum
envelope amplitude of the sound (Fant, 1970). These frequencies
were then synthesized to provide the subject with audio feedback.
The data collected with this patient also served for decoding pho-
nemes from unit firing rates; comparing three classification meth-
ods, linear discriminant analysis (LDA), support vector machine
(SVM), and flexible discriminant analysis (FDA) – SVM achieved
the highest accuracy (21%) for 38 phonemes (i.e., significantly
above the chance level of 2.6%) (Brumberg et al., 2011).

In parallel to these early efforts with unit-based speech BMI,
other researchers studied the ability to directly decode speech
using ECoG – type signals. Kellis et al. (2010) recorded ECoG and
micro-ECoG from the surface of face motor cortex and Wernicke’s
area in an epilepsy patient and classified a set of 10 spoken words
on a trial-by-trial basis. Although high accuracy (90%) was
achieved on average for all word pairs, it is difficult to compare
these results to other studies, because the classified trials were
not cross-validated and included only ones with subjectively-se-
lected stereotyped vocal repetitions.

Schalk and colleagues showed that ECoG signals can be used to
decode vowels and consonants in spoken or imagined words that
could be employed for speech-based BMI systems (Pei et al.,
2011). Combining time and frequency domain features, naïve
Bayes classifiers obtained similar accuracies for both vowel decod-
ing and consonant decoding tasks: around 40% accuracy for overt
and covert speech tasks, significantly above the 25% chance level.

Schalk and colleagues have also demonstrated a cross-modality
BMI where ECoG signals associated with different overt and imag-
ined phoneme articulation were utilized for the control of a one-
dimensional computer cursor rapidly and accurately. The phonetic
content was distinguishable within higher gamma frequency oscil-
lations and enabled users to achieve final target accuracies be-
tween 68% and 91% within 15 min. (Leuthardt et al., 2011). They
suggested the use of speech-related signals as a cognitive and
physiologic substrate for BMI operation, not limited to a speech-
producing BMI.

Recently, we used single unit recordings obtained from human
subjects during the pronunciation of speech segments, to propose a
speech BMI that is based on direct decoding of the phoneme that
the user wishes to pronounce (Tankus et al., 2012a) – decoded pho-
nemes can be pre-recorded and played back. The decoder employs
neurons recorded mainly from two populations of cells, each of

A. Tankus et al. / Journal of Physiology - Paris 108 (2014) 38–44 39



Download English Version:

https://daneshyari.com/en/article/5922376

Download Persian Version:

https://daneshyari.com/article/5922376

Daneshyari.com

https://daneshyari.com/en/article/5922376
https://daneshyari.com/article/5922376
https://daneshyari.com

