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h  i  g  h  l  i g  h  t  s

• Shape  of foam  front  during  foam
improved  oil  recovery  is  modelled.

• Foam  more  mobile  at  top  as dense
surfactant solution  slumps  down-
wards.

• Foam  front  develops  transient  con-
cavity  but  this  migrates  toward
bottom  of  the  front.

• At long  times, foam  front  actually
develops  convex  kink.

• Apparent  horizontal  propagation
velocity  is uniform  across  convex
kink.
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a  b  s  t  r  a  c  t

Foam  is  often  used  in improved  oil  recovery  processes  to  displace  oil  from  an  underground  reservoir.  Dur-
ing  the  process,  the  reservoir  is flooded  with  surfactant,  and  then  gas  is  injected  to  produce  foam  in  situ,
with  the  foam  front  advancing  through  the  reservoir.  Here  the  effect  of  surfactant  slumping  (downward
movement  of surfactant  in  relation  to  a lighter  phase)  upon  the  advance  of a foam  front  is presented.
Slumping  which  can be  associated  with  foam  drainage,  coarsening  and  collapse,  causes  a rise  in  mobility
of the  foam  front  specifically  near  the top  of  the front.  The  description  of  a  foam  front  displacement  for
an  initially  homogeneous  foam  mobility  is therefore  modified  to account  for slumping-induced  inhomo-
geneities.  Numerical  solution  for  the  front  shape  shows  that,  although  slumping  transiently  produces  a
localised concave  region  on  the  otherwise  convex  front,  this  concavity  has  little  effect  on the  long  term
front  evolution.  In fact in  the  long-time  limit,  a convex  kink  develops  on the  front:  an  analytical  solution
describing  the  convex  kink agrees  very  well  with  the  numerics.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Surfactant and gas are often injected into underground oil reser-
voirs so as to produce foam that can subsequently displace oil
and achieve improved oil recovery: under these circumstances
engineers wish to predict how the foam front advances through
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the reservoir displacing the oil. In the calculations of foam front
movement through an oil reservoir an idealised model for so called
surfactant-alternating-gas (SAG) injection [1,2], is used. The model
is known as ‘pressure-driven growth’ [3].

In what follows we introduce the ‘pressure-driven growth’
model with a minimum of detail as it is already well discussed in
literature [1–3]. However the appendix provides additional detail
about the model for readers who require it.

During the surfactant-alternating-gas (SAG) process a foam
bank advances into an oil reservoir that has already been flooded
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Fig. 1. Schematic of a foam front displacement. The region to the right of the front is
filled with liquid (surfactant solution): this is the so called ‘liquid bank’. The region
to  the left of the front up to the gas injection point is filled with dry foam with
comparatively large bubbles: this is the so called ‘gas bank’ or ‘foam bank’. The wet
foam region at the front itself (where bubbles are comparatively small) provides the
dominant resistance to motion. The horizontal coordinate XD and vertical coordinate
ZD (measured downwards) and the angle  ̨ are indicated on the figure.

with surfactant in aqueous solution (the so called liquid bank). The
pressure driving the foam is the difference between the injection
pressure and the hydrostatic pressure (the latter of course vary-
ing with depth). The pressure-driven growth model assumes (with
some justification from so called fractional flow theory [1]) that
most of the resistance to the foam motion arises from a region of
wet foam located right at the foam front, and moreover this resis-
tance grows according to the distance that the front has displaced
(because the wet  foam region gradually thickens over time). Bal-
ancing the driving pressure force with the resistance leads to a
prediction for the speed of material points on the foam front, the
direction of motion being normal to the front.

Mathematically the model consists of a system of differential
equations for the motion of the material points, the equations being
solved numerically [2], in our case with an algorithm programmed
in Matlab.

The system of equations can be conveniently written in dimen-
sionless form, using scales identified by [1] (see also Appendix
A). The dimensionless equations describing the system (1)–(3) are
shown as follows:

dXD

dtD
= (1 − ZD) cos ˛

sD
(1)

dZD

dtD
= (1 − ZD) sin ˛

sD
(2)

dsD

dtD
=
√(

dXD

dtD

)2

+
(

dZD

dtD

)2

(3)

where XD gives horizontal position in a rectangular reservoir, ZD

the vertical position (measured downwards from the top), tD the
time, sD the distance the front travels, and  ̨ the angle giving the
front orientation as depicted in Fig. 1 (specifically tan  ̨ = − dZD/dXD,
implying that Eqs. (1)–(3) are partial differential equations in space
and time, rather than ordinary differential equations in time only).
Note that ZD = 1 corresponds to the point at which hydrostatic
pressure balances injection pressure: the front cannot advance to
depths beyond ZD = 1.

The initial and boundary conditions are:

XD(ZD, 0) = 0 (4)

sD(ZD, 0) = 0 (5)

˛(0, tD) = 0. (6)

In the implementation of the initial conditions in the com-
puter program, those given by Eqs. (4) and (5) are changed to
XD(ZD, 0) = sD(ZD, 0) = sD0 where sD0 is a small parameter (typi-
cally chosen here to be sD0 = 0.001) to avoid having infinite values
of dXD/dtD and dZD/dtD at tD = 0. Starting from a vertical front, for

a homogeneous medium (i.e. a homogeneous reservoir, with in
addition, foam mobility being homogeneous along the front), the
system tends to give a convex shape for the front at finite time: the
top of the front advances more than parts lower down because the
difference between injection pressure and hydrostatic pressure is
greater at the top.

Boundary condition (6), which according to the definition of
angle  ̨ says that material instantaneously at the top of the reser-
voir is moving parallel to the top, implies also that the top of the
front has unit speed at the particular time when it has displaced
by unit distance. The volume swept by the front grows over time,
albeit this rate of sweeping volume slows down as time proceeds.

Numerical solution for pressure-driven growth, i.e. discretising
the front shape and computing the evolution of the discretised front
material points, is known to present challenges [2,3]. In our numer-
ical implementation it is possible to trace the front displacement
until large times, and still have a fair representation of its shape,
because a rule has been implemented for subdividing front seg-
ments whenever they become too long, which occurs particularly
near the top of the reservoir. Such a rule is given by Eq. (7), where
the subscript 0 indicates a point at the top of the reservoir, the sub-
script 1 refers to the next point below the top, and n indicates a
new point between these two.

XDn = XD0 −
(

ZD0 − ZDn

ZD0 − ZD1

)3/2 (
XD0 − XD1

)
. (7)

This equation respects a known mild singularity [3] for the front
curvature at the top boundary: specifically it has been shown [3]
that in the limit of very small ZD values, the amount that XD falls
behind the leading edge at the top of the reservoir is proportional
to Z3/2

D , corresponding to a curvature scaling proportional to Z−1/2
D .

Further details about this singularity and why it arises are given in
Appendix A.

As already mentioned above, the foam front (at least for
a homogeneous system) is expected to have a convex shape.
This is somewhat fortunate, because concavities are known to
be extremely problematic when implementing pressure-driven
growth [3]. Nevertheless, even small concavities in the shape of
the curve caused by numerical artifacts (for example, truncation
and/or round-off error accumulation) or by the physical nature of
the system (e.g. if the medium is not perfectly homogeneous) could
lead to a completely distorted shape of the curve, as concave points
tend to fall increasingly far behind their neighbours [3].

The evolution of concavities over time, if they are not addressed,
causes the formation of spurious loops [3] (regions where points
of the front cross over each other). Spurious loops are generated
whenever the points towards the back of a concavity are left behind
but the points further ahead converge towards each other and
cross over one another. Points towards the back of a concavity can
have their velocities corrected to avoid them falling behind (the
corrected version represents the physics that we want the pressure-
driven growth model to capture [3], specifically the backs of the
concavities constitute ‘shocks’ which have a different speed from
front material points which constitute ‘characteristics’ of the gov-
erning partial differential equations). The velocity correction does
however cause the length of the intervals towards the back of the
concavity to decrease over time, in turn requiring implementation
of a rule to eliminate short intervals. For these reasons, it is neces-
sary that the algorithm be able to deal with both concavities and
shrinking intervals.

Our way  to handle the presence of concavities in the front shape
is, as mentioned above, by applying a correction in the velocity
calculations (the correction being reflected in the time derivatives,
Eqs. (1) and (2) in the original system) when certain criteria on the
degree of concavity are met. This aims to speed up the displacement
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