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a  b  s  t  r  a  c  t

Aging  and  disease  are  accompanied  with  a reduction  of complex  variability  in the  temporal  patterns  of
heart rate.  This  reduction  has  been  attributed  to  a  break  down  of the  underlying  regulatory  feedback
mechanisms  that  maintain  a homeodynamic  state.  Previous  work  has  established  the utility  of  entropy
as  an  index  of  disorder,  for quantification  of  changes  in  heart  rate  complexity.  However,  questions  remain
regarding  the  origin  of heart  rate  complexity  and  the mechanisms  involved  in  its  reduction  with  aging and
disease.  In  this  work  we  use  a newly  developed  technique  based  on  the  concept  of  band-limited  transfer
entropy  to  assess  the  aging-related  changes  in  contribution  of  respiration  and blood  pressure  to  entropy  of
heart rate at different  frequency  bands.  Noninvasive  measurements  of heart  beat  interval,  respiration,  and
systolic  blood  pressure  were  recorded  from  20 young  (21–34  years)  and  20 older  (68–85  years)  healthy
adults.  Band-limited  transfer  entropy  analysis  revealed  a reduction  in  high-frequency  contribution  of
respiration  to heart  rate complexity  (p < 0.001)  with  normal  aging,  particularly  in  men.  These  results
have  the  potential  for dissecting  the  relative  contributions  of respiration  and  blood  pressure-related
reflexes to heart  rate  complexity  and  their  degeneration  with  normal  aging.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Although it is known that aging is associated with increased
cardiovascular risk (Lakatta et al., 2009; Najjar et al., 2005; Ryan
et al., 1994; Shiogai et al., 2010), the underlying mechanisms are
poorly understood. Furthermore, diseases such as obstructive sleep
apnea, which are independent risk factors for cardiovascular dis-
ease, increase in prevalence with age (Ancoli-Israel et al., 1996;
Wellman et al., 2007; Young et al., 2002), and may contribute
to overall cardiovascular risk. In order to assess the relationships
between age and cardiovascular control, investigators have used
indices of heart rate (HR) variability (based on the variance of HR
time series) and complexity (based on predictability and nonlinear
relationships in HR time series), with most studies demonstrating
a reduction in HR variability and complexity with age (Goldberger
et al., 2002; Nolan et al., 1998; Ponikowski et al., 1997; Tsuji et al.,
1996). However, the specific mechanisms for this reduction are not
known.
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There are a number of mechanisms that contribute to variability
in HR; among them are those linked to variability in blood pressure
and respiration (including periodic and aperiodic oscillations). They
may emerge as a result of various delayed feedback and feedfor-
ward pathways between the system variables (Bruce, 1996; deBoer
et al., 1987; Nemati et al., 2011), as well as the influence of sig-
nals from the afferent and efferent nerves influencing vagal-cardiac
motoneuron and pacemaker cells involved in generation of heart
beat and respiration (Del Negro and Hayes, 2008; Eckberg, 2009).
Quantification of the coupling between HR and factors such as blood
pressure and respiration is therefore necessary to probe the origin
of the reduction in HR variability and complexity with age. Using
spectral analysis of HR and respiration, several authors have shown
a significant reduction with age in HR variability in the frequency
ranges associated with breathing (Pinna et al., 2006; Singh et al.,
2006). However, techniques using spectral analysis make major
assumptions about the underlying system dynamics including lin-
earity and stationarity. Such limitations are important given that
previous research has suggested that the coupling between respi-
ration and cardiovascular system is strongly nonlinear (Novak et al.,
1993; Wessel et al., 2009), and in this case, spectral analysis is not
appropriate.

Given these limitations, Goldberger et al. have successfully
used techniques from nonlinear dynamics, such as fractal scaling
and entropy, to characterize subjects according to the nonlinear
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complexity of their HR (Goldberger et al., 2002; Iyengar et al., 1996;
Lipsitz and Goldberger, 1992; Ryan et al., 1994). The concept of
entropy for assessing higher order temporal structures in the time
series has been emphasized (Ryan et al., 1994; Takahashi et al.,
2012), since it does not make any assumptions about the linearity
of the system. Notably, a conditional variant of entropy known as
sample entropy has been widely used to assess the complexity of
HR (Humeau et al., 2008; Lake et al., 2002; Moorman et al., 2011;
Vaillancourt et al., 2004). By extension, multiscale entropy, which
examines the entropy at different time-scales, has been suggested
as an effective tool to assess physiological systems (Costa et al.,
2002). However, a limitation of all these techniques (including
spectral methods when applicable) is that they do not assess direc-
tional relationships (e.g., the nonlinear influences of respiration
and blood pressure on HR), and therefore, without substantial
prior physiological knowledge, have limited power to reveal the
underlying mechanisms responsible for the changes in complexity.

As such the major aim of the current work is to develop a
technique based on the concept of band-limited transfer entropy to
quantify the contribution of both respiration and blood pressure
to HR complexity over multiple frequency bands. The proposed
technique aims to track the directional coupling between both res-
piration and blood pressure with HR over low and high frequency
bands, which are influenced by the sympathetic and parasympa-
thetic regulatory reflexes (Robinson et al., 1966; Shannon et al.,
1987). Previously, Iyengar et al. (1996) demonstrated a reduction
in complex variability of HR (based on the concept of fractal scal-
ing) with aging in a subset of subjects from the Physionet Fantasia
database. Here we confirm the findings of that study within the
entire Fantasia dataset (Goldberger et al., 2000) using a condi-
tional entropy analysis, and then assess the aging-related changes
in contribution of respiration and blood pressure to HR complex-
ity within the male and female populations using the technique of
band-limited transfer entropy.

2. Methods

2.1. Dataset

Our cohort consisted of a group of healthy subjects from
the Physionet Fantasia database (Goldberger et al., 2000; Iyengar
et al., 1996), which consisted of 20 young subjects (21–34 years)
and 20 older adults (68–85 years). Each group was made up of
equal numbers of males (n = 10) and females (n = 10). The subjects
underwent two hours of continuous monitoring in supine resting
position while watching the Disney movie ‘Fantasia’. Continuous
time-synchronized measurements of electrocardiogram (ECG) and
respiration (impedance plethysmography) were collected in all
subjects. Additionally, non-invasive measurements of blood pres-
sure (tonometric pressure, Colin Electronics) were recorded in
a subset of 10 young and 10 older adults. All waveforms were
recorded at 250 Hz sampling frequency. All of our analyses are
limited to artifact-free segments of the data, determined according
to the signal quality assessment procedure described below.

2.2. Preprocessing and extraction of beat-by-beat time series

An example of the processed waveforms and time series is
shown in Fig. 1. We  used the automatically detected, visually
verified and corrected ECG R-peak annotations available on the
Fantasia website (Goldberger et al., 2000) to derive time series
of peak-to-peak (RR) intervals. Within each RR interval, a search
was performed to find the location of peaks of the blood pressure;
these constituted our systolic blood pressure (SBP) time series.
The onset of each breath was detected as follows (Nemati et al.,

2011). We  first removed the baseline drift (often seen in impedance
plethysmography-based measurement of respiratory volume) by
fitting a cubic spline function through all the breath onsets, and
subtracting the resulting “baseline” curve from the respiratory
waveform; the resulting volume waveform started at zero upon
the onset of each breath. Next, we  constructed a respiratory vol-
ume  time series for each RR interval from the volume difference at
the times of the R wave peaks (see Fig. 2, panels A, C, and E).

Due to the presence of artifacts in ECG and blood pressure wave-
forms, we also calculated indices of waveform signal quality via
constructing template (or average) beats and assigning a signal
quality index (SQI) to every ECG and blood pressure beat according
to their correlation coefficient with their corresponding templates;
where a correlation coefficient near unity represents a high qual-
ity signal. For each subject, a separate template beat for ECG and
blood pressure was constructed by placing a temporal window of
size equal to median RR interval (symmetric around the wave-
form peaks) on each beat and averaging the windows over all the
beats. Next, each record was  segmented into continuous artifact-
free blocks of ECG (and when available blood pressure) with SQIs
of larger than 0.7. Finally, all samples within each time series were
replaced with their ranks (similar to nonparametric statistical tests)
(Lee et al., 2012) in order to eliminate the problem of data outliers
while still preserving all the joint information among time series
(Darbellay and Vajda, 1999; Hudson, 2006b). We  used the resulting
time series within all the artifact-free data blocks for the estimation
of transfer entropy.

2.3. Transfer entropy

Recent techniques for studying nonlinear directional relation-
ships among discretized physiological variables have been based
on utilizing the concept of transfer entropy (Lee et al., 2012; Porta
et al., 2011). Briefly, given two  time series X = {x1, x2, . . .,  xN} and
Y = {y1, y2, . . .,  yN}, the transfer entropy from X to Y, denoted TX→Y

(Lee et al., 2012) is defined by:

TX→Y = H(yi|yi−1) − H(yi|yi−1, xi−�), (1)

where for an arbitrary time series Z with probability density P(zi),
its entropy H(Z) = −

∑
zi

P(zi) log P(zi) is related to the amount of

information needed to predict the future values of the time series.
Thus, a time series with a high level of entropy tends to be more
random and have greater complexity. Furthermore, the conditional
entropy term H(zi|zi−�) =

∑
zi,zi−1

P(zi, zi−�) log(P(zi−�)/P(zi, zi−�)),

where P(zi, zi−�) is the joint probability density, is the amount of
information needed to predict the future values of Z if we  know its
past value at some lag �. For example, the conditional entropy of
RR intervals, denoted as H(RRi|RRi−1), is the amount of information
needed to predict the future value of RR given that we  know its cur-
rent value at time i. Thus in Eq. (1), the transfer entropy from X to Y,
TX→Y, quantifies the amount the history of X at lag � (i.e., xi−�) pre-
dicts the current value of Y (i.e., yi) beyond the amount it is already
predicted by its own  immediate history (i.e., yi−1). When consid-
ering the transfer entropy from both SBP and RESP to RR intervals,
we varied the lag parameter � from 1 to 6, and we report the lag
with the maximal transfer entropy. The fast parasympathetic (or
vagal) responses allow the SBP and RESP to affect RR interval within
one beat, while the slower sympathetic response may  take two  or
three beats to attain its maximal effect (deBoer et al., 1987; Eckberg,
2009).

Calculation of the conditional entropy quantities in Eq. (1)
requires estimation of joint probability distributions among the
variables of interest. Typically this procedure is done by binning the
data in a manner similar to constructing histograms, which requires
an often arbitrary decision regarding the number and size of bins. In
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