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• Local  cohesive  force  is  calculated  in
a  nano-slit  between  coaxial  cylinders
with dispersion  forces.

• Distribution  of  local  thermodynamic
surface  tension  on  the slit  wall  is
obtained.

• Line  tension  at  the  slit  rim  is esti-
mated as  a  function  of the cylinder
radius.
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a  b  s  t  r  a  c  t

This  is  the  first direct  calculation  of line  tension  at a curved  edge  of  a  solid.  As an  example,  we  consider
an  empty  slit  between  two unconstrained  coaxial  cylinders  with  dispersion  forces  at  nanoscale.  The
computational  scheme  includes  the  calculation  of  (a)  the  local  stress  tensor  field  inside  the  slit,  (b)  local
thermodynamic  surface  tension  as  a function  of the  location  on the slit  walls,  and  (c)  line  tension  at  the
circular  rim  as a function  of the cylinder  radius.  The  calculations  have  been  made  on  the  basis of  the
Irving–Kirkwood  stress  tensor  of  statistical  mechanics.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The concept of line tension is rooted in Gibbs’ formulation of the
classical theory of capillarity. Every heterogeneous system includes
interfacial surfaces, which can intersect each other to form inter-
facial lines. Similarly as an interfacial surface possesses surface
tension, an interfacial line possesses line tension. Depending on
the physical configuration of a system, there are several types of
line tension. So, first of all, we have to explain what kind of line
tension is under consideration. Following the general classification
of line tension [1] (see also surveys [2,3] for solid surfaces), we
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will investigate thermodynamic line tension � as the work of for-
mation of a linear interface per unit line length. Quantity � is a
one-dimensional analog of thermodynamic surface tension (des-
ignated as � by Gibbs). By definition, � is the work of disjoining
two pieces of a solid (divided by a plane) from the intermolecular
distance ı to infinity in a vacuum (the cleavage work):

2� =
∞∫
ı

f (H)dH, (1)

where H is the width of a slit between the pieces and f(H) is the
cohesive force per unit area. The notion of line tension appears as
a result of a change in surface tension when approaching an edge
along the surface at the nano-scale. If � is the surface tension value
far from the edge and �(x) is a function showing the dependence
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Fig. 1. Scheme of vectors standing in Eq. (3): vector r points the elementary unit
area where the local stress tensor is sought for; the pair of interacting (through this
init  area) molecules are located at points 1 and 2.

of surface tension on the distance x from the edge, the line tension
at the edge is

� ≡ 1
L

∑∫
[�(x) − �] dA, (2)

where L is the edge length and A is the surface area, the integration
is carried out over each surface and summation over all surfaces
meeting at the edge.

As is seen from Eqs. (1) and (2), the knowledge of cohesive force
f(H) is necessary for calculating both surface and line tensions. At
every location and especially near the edge when � is replaced by
�(x), we may  define f(H, x) as a local value of the normal component
EN(x) of the stress tensor at the slit surface. The local stress tensor
was introduced in statistical mechanics by Irving and Kirkwood [4].
Working with a vacuum in a slit, the full Irving–Kirkwood stress
tensor is reduced to its cohesive part of the form

E(r) = 1
2

∑
i,j

∫
R × R

R
˚′

ij(R)dR

1∫
0

�(2)
ij

(r − �R, r − �R + R)d�, (3)

where R is the vector connecting two interacting particles with
separation R between them and passing through point r (writing
R×R symbolizes a direct vector product, which is a tensor); �

′
ij
(R)

is the derivative of the pair interaction potential ˚ij(R) for particles
of sorts i and j (i.e. the force of interaction between the particles);
dR is the product of Cartesian components dRx, dRy, and dRz; R is

the modulus of vector R; �(2)
ij

(r − �R, r − �R + R) is the two-particle
distribution function for the particles simultaneously located at the
points r − �R and r − �R + R on the opposite sides from a unit surface
with coordinate r (that is controlled by an additional variable �). The
integration with respect to R is performed over the whole space.
The computational scheme of the Irving–Kirkwood tensor accounts
only for those molecular pairs whose connecting lines intersect the
elementary unit area with coordinate r (which splits R into fractions
� and 1 − �, Fig. 1). The summation is carried out with respect to par-
ticle sorts (in a multicomponent system) and will be not needed for
our calculations. After multiple use, the Irving–Kirkwood stress ten-
sor has confirmed its physical significance. In particular, it correctly
corresponds to the mechanical equilibrium condition

∇ · E(r) = 0. (4)

A pair potential is an important element of the Irving–Kirkwood
stress tensor. Among various types of forces and numerous cal-
culations made, most attention was primary paid to attractive
dispersion forces [5,6], which remain better studied in modern

science. For dispersion forces without retardation, the pair poten-
tial of molecular interaction is

˚ij(R) = −AijR
−6, (5)

where Aij is the interaction constant and R is a distance between
interacting molecules of sorts i and j. In our calculations, we assume
Eq. (5) to be valid down to R = ı, which attaches a certain model form
to the pair potential ˚ij(R).

We now can formulate a computational scheme for line ten-
sion. The first stage is calculation of the local normal stress in an
empty nano-slit with the aid of the Irving–Kirkwood stress tensor
(3). The second stage is calculation of the local surface tension by
using Eq. (1). The third stage includes the estimation of line tension
according to Eq. (2). Concerning the first stage, similar calculations
undertaken in the past typically referred to infinite slits (see, e.g.,
Ref. [6]). Only recently the results for semi-infinite slit [7,8] yielded
some output to the line tension of a rectilinear crystal edge [9,10].
This paper presents the first attempt to perform calculations for a
slit restricted not only in thickness, but also in all lateral directions
and to estimate the line tension of a curved edge as a function of
the curvature radius. The object for consideration will be an empty
circular slit between two  unconstrained coaxial cylinders of same
radius (but, generally, of different nature). A system of such config-
uration and also with the van-der-Waals interaction was recently
investigated by Jaiswal and Beaudoin [11], but only with respect to
the integral interaction as a generalization of Hamaker’s classical
approach [12]. By contrast, our method yields a more detailed pic-
ture of distribution of the stress tensor and surface tension over the
slit surfaces, which makes possible calculating line tension at the
lateral slit rims. A similar detailed investigation, but with respect
to local disjoining pressure, was  recently done for the slit between
an infinite plane and a cylindrical body normally oriented to the
plane [13].

2. The local cohesive force

Let us detail the first stage of the above computational scheme.
The system configuration is shown in Fig. 2 where a is the slit radius
and H is the slit width. Since only a and H are nano-scaled param-
eters, we may  set the cylindrical bodies to be infinite in length.
We specify the point under consideration (where the stress ten-
sor is sought-for) on the lower slit wall as the origin of cylindrical
coordinates �, ϕ, z with the z-axis directed above normally to the
slit walls. The positions of two interacting molecules in bodies 1
and 2 are given by vectors r1 and r2. Evidently, these vectors are
directed oppositely, but are collinear since the straight line seg-
ment of length R connecting the two  interacting molecules should
pass through the point under consideration (Fig. 2). We  then can
write

r1 = (1 − �)R, r2 = −�R, (6)

so that R = r1 − r2.
Eq. (3) contains the integration with respect to Rx, Ry, Rz, and �.

We change the variables for �1, ϕ1, z1 (the components of vector
r1) and z2 (the z-component of vector r2). The Jacobian modulus for
this transformation is∣∣∣∣ D(Rx, Ry, Rz.�)

D(�1, ϕ1, z1, z2)

∣∣∣∣ = �1(z1 − z2)

z2
1

.

It also follows from Eq. (6)

R = r1
z1 − z2

z1
, R = r1

z1 − z2

z1
, (7)
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